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Chapter 1

INTRODUCTION

The Environmental Fluid Dynamics Code Plus (EFDC+) is an open source, surface
water modeling system. EFDC+ encompasses one, two and/or three-dimensional hydrody-
namics and water column constituent transport. The hydrodynamics are internally coupled
to the multiple modules; sediment erosion/deposition, toxics transport, eutrophication ki-
netics, sediment diagenesis, oil spill and particle tracking using an integrated, single source
code implementation. Worldwide applications in support of environmental assessment,
management and regulatory requirements of EFDC+ include hundreds of water bodies such
as rivers, lakes, reservoirs, wetlands, estuaries, and coastal ocean regions.

1.1. Development History

EFDC+ is based on the public domain, open source version of EFDC (Hamrick, 1992).
EFDC was originally developed at the Virginia Institute of Marine Science (VIMS) and
School of Marine Science of The College of William and Mary, by Dr. John M. Hamrick
beginning in 1988. The historical evolution of the EFDC model has to a great extent been
application driven by a diverse group of EFDC users in the academic, governmental, and
private sectors as highlighted in Figure 1.1.

Since 2000, DSI, LLC (DSI) has been providing ongoing enhancement and develop-
ment of EFDC for various surface water, sediment transport, water and quality projects.
This includes adding multiple new features, the theory for which is described in this docu-
ment. DSIs improvements to the EFDC code had become so extensive that in 2016 the DSI
version of EFDC was renamed as EFDC+.
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Fig. 1.1. Overview of EFDC+ development history

1.2. EFDC+ Advancements

DSI’s EFDC+ code reflects the following key enhancements to the EFDC code:

• OpenMP - Multithreading: Integration of OpenMP into the EFDC+ code pro-
vides vastly improved model run times. The Intel® OpenMP Runtime Library binds
OpenMP threads to physical processing units. EFDC+ typically produces run times
up to four times faster on a six-core processor than the conventional single-threaded
EFDC model.

• Dynamic Memory Allocation: Dynamic allocation eliminates the need to re-
compile the EFDC+ code for different applications. Previously, due to the limitations
of Fortran 77, different maximum array sizes were required to specify the computa-
tional grid domain and time series input data sets. Dynamic allocation also helps
mitigate array indexing errors and provides better traceability for source code devel-
opment.

• Sigma-Zed Layering: EFDC+ handles the pressure gradient errors that occur in
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simulations of models with steep changes in bed elevation. The Sigma-Zed func-
tionality in EFDC+ contrasts the original EFDC code, as the original uses a sigma
coordinate transformation in the vertical direction and uses the same number of lay-
ers for all cells in the domain. In the EFDC+ Sigma-Zed model, the vertical layering
scheme has been modified to allow for the number of layers to vary over the model
domain. This approach is computationally efficient and significantly improves the
simulation of density stratification.

• Hydraulic Structures: Equations governing hydraulic structures such as culverts,
weirs, sluice gates, and orifices are implemented in EFDC+. This feature differs from
the previous rating curve based approach for a hydraulic structure. Additionally, the
modeler can specify rules of operations that depend on the model hydrodynamics.

• Enhanced Heat Exchange: EFDC+ includes heat exchange options that use equi-
librium temperatures for the water and atmospheric interface, and spatially variable
sediment bed temperatures. The eutrophication and sediment transport sub-models
water column concentrations are now coupled with the heat submodel by including
spatially and temporally varying light extinction.

• Ice Formation and Melt: A heat coupled ice formation and melt approach to handle
cold climates has been added. Surface processes are controlled by the presence or
absence of a dynamically computed ice cover.

• Multiple Dyes1: An unlimited number of user defined dye classes including “Age of
Water” can be simulated in EFDC+. Decay and/or growth and settling can be added
to any dye class.

• Lagrangian Particle Tracking (LPT): An LPT sub-model has been added in
EFDC+, that allows for thin and/or tortuous channels, settling, decay and other pro-
cesses. Oil spill and emergency response simulations are among some of the appli-
cations of LPT modeling.

• SEDZLJ Implementation: The version of EFDC modified by Sandia National Lab-
oratory (SNL-EFDC+) contains a SEDZLJ model. This model has been further de-
veloped in EFDC+ and has undergone significant improvements for mass balance,
hard bottom bypass, and computational efficiency. The SEDZLJ model has now
been linked to the toxics sub-model.

• Internal Wind Wave Generation: A wind generated wave sub-model has been
added to EFDC+ to enable the computation of wind wave generated bed shear stress
on sediment resuspension and wave induced currents.

1This feature is specific to version 10.0 and later.
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• Rooted Plant and Epiphyte Model (RPEM) Module: A RPEM module has been
incorporated into EFDC+ to better simulate water quality interactions with sub-
merged aquatic vegetation (epiphytic algae and macrophytes).

• External Wave Model Linkage: Linkage to SWAN (Team, 2019) and other external
wave models has been simplified and improved in EFDC+.

• Marine and Hydro-kinetic (MHK) Linkage: EFDC+ includes a MHK module for
simulation of potential effects of installing and operating turbines and wave energy
converters in rivers, tidal channels, ocean currents, and other waterbodies. This code
is adapted from SNL-EFDC+ (Grace et al., 2008).

• Run Continuation: If the model crashes or the user desires to extend the period
of simulation, the EFDC+ model can be configured as a continuation run where the
model outputs are seamlessly appended to the previous run.

• Spatially and Temporally Varying Fields2: Bathymetry and/or other data like
roughness and vegetation can be dynamically adjusted during the model run in
EFDC+. This allows for dredging scenarios and seasonal vegetation patterns.

• NetCDF: EFDC+ can output results in NetCDF file formats for model analysis in
other programs.

• High Frequency Output: New output snapshot controls are available to target spe-
cific periods for high frequency output within the standard regular output frequency.

• Streamlining: The code has been converted to Fortran 90 and streamlined for
quicker execution times.

• Model Linkages: Customized linkage of model results for the Windows-based
EFDC Explorer graphical pre- and post-processor for EFDC+.

1.3. EFDC+ Overview

The EFDC+ is a general-purpose modeling package for simulating three-dimensional
(3-D) flow, transport, and biogeochemical processes in surface water systems includ-
ing: rivers, lakes, estuaries, reservoirs, wetlands, and near-shore to shelf-scale coastal
regions. Special enhancements to the hydrodynamics of the code include vegetation re-
sistance, drying and wetting, hydraulic structure representation, wave current boundary
layer interaction, and wave-induced currents, refined modeling of wetland and marsh sys-
tems, controlled-flow systems, and near-field and far-field discharge dilution from multiple
sources.

The structure of the EFDC+ model contains many modules, each of which is high-
lighted in Figure 1.2.
2This feature is specific to version 10.0 and above,
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• Integrated 
Compartment Model 
(ICM) Nutrient Kinetics

• 21 State Variables
• Sediment Diagenesis
• Rooted Plant Epiphyte 

Model

• 1, 2, and/or 3D
• Sigma Stretched
• Sigma-Zed 
• Wind Circulation
• Wave Impacts
• Ice Impacts
• Vegetation
• Wetting / Drying
• Hydraulic Structures

• • 1, 2, and/or 3D
• Sigma Stretched
• Sigma-Zed 
• Wind Circulation
• Wave Impacts
• Ice Impacts
• Vegetation
• Wetting / Drying
• Hydraulic Structures

• 

• Original / SEDZLJ Approach
• Any Number of Sediment Classes
• Cohesives
• Non-Cohesives
• Bedload
• Hard Bottom Regions

• Metals
• Persistent Organic Pollutants
• 1-2-3 Phase Partitioning
• Coupled to Original Approach
• Coupled to SEDZLJ
• Degradation
• Volatilization

• Unlimited Tracers
o Conservative
o Decay and Growth
o Age of Water

• Temperature
o Heat Coupled Ice

• Salinity
• Lagrangian Particle 

Tracking
• Oil Spill

Water QualityHydrodynamics

General Eutrophication Sediment Transport Toxics Transport

Fig. 1.2. Primary modules of the EFDC+ model.

1.3.1 Hydrodynamics

The EFDC+ hydrodynamic model simulates near field plume, wind generated and ex-
ternally linked wave models. In the hydrodynamics, temperature and salinity are optionally
incorporated to address density effects. The hydrodynamic model is linked to sub models
such as dye/age of water, sediments, toxics, water quality and Lagrangian particle tracking
as highlighted in Figure 1.2. EFDC+ is a coupled model which solves both the hydrody-
namics, transport, and kinetics in an integrated code, thus eliminating the need for external
coupling between hydrodynamics and transport modules.

1.3.2 Sediment Transport Modules

EFDC+ supports two separate erosion/deposition approaches:

1. Original EFDC Sediment Transport

2. SEDZLJ Sediment Transport

Both approaches treat the water column transport the same way. The differences in
these two approaches are in the way the water column sediment interacts with the sediment
bed, i.e. erosion and/or deposition and in the treatment of the sediment bed itself. The first
approach is referred to as the “original” sediment transport option, which was added by
Hamrick. This approach simulates transports and fate of multiple size classes of cohesive
and non-cohesive suspended sediment including bed deposition and resuspension (see Fig-
ure 1.2). The SEDZLJ approach (Ji, 2008) uses bed shear and erosion rate data developed
from testing sediment cores with the SEDFlume apparatus.
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Dynamics

Morphological Feedback

Hydrodynamic 
Model

Original Sediment
Transport Module 

Water Column Sediment Bed

Non-cohesive #1
Non-cohesive #2
Non-cohesive #3

...

Cohesive #1
Cohesive #2

...

Fig. 1.3. Structure of the original sediment
transport model.

SEDZLJ Sediment
Transport Module

User Defined Sediment Class #1
User Defined Sediment Class #2
User Defined Sediment Class #3

...

Dynamics

Morphological Feedback

Hydrodynamic 
Model

Water Column Sediment Bed

Fig. 1.4. Structure of the EFDC+ SEDZLJ
sediment transport model.

1.3.3 Toxics Fate and Transport Module

When the “original” sediment transport capability was added toxic contaminant trans-
port was also added (Tech, 2002). This module allows for optional toxic contaminant
partitioning onto water column and sediment bed solids. Prior to 2015, even though multi-
ple partitioning options were available, only one approach could be used for all the toxics
included in a simulation. DSI updated the toxic partitioning module to allow each toxic
constituent to use its own unique partitioning approach. Figure 1.5 provides a schematic of
the basic model approach.

Sediment Transport

Toxics #1
Toxics #2

...

Hydrodynamic 
Model

Water Column Sediment Bed

Sediment Transport

Toxics #1
Toxics #2

...

Hydrodynamic 
Model

Water Column Sediment Bed

Toxics Transport

Fig. 1.5. Linkage between hydrodynamic, sediment transport and toxics model.

1.3.4 Lagrangian Particle Tracking Module

Lagrangian Particle Tracking (LPT) was developed as a practical tool for predicting the
transport of discrete particles in a system. Specific applications include the tracking of:

1. Floating objects in rivers, lakes and the sea in general
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2. Oil spills

3. Particles or water from a specific source

The advantage of this approach is that it is possible to track the progressive movements
of each specific particle in greater detail and accurately in comparison with the method of
determining average concentration for grid cells. This process is computationally expen-
sive. However, as the computing capacity is getting cheaper, it is getting easier to simulate
these models. The movement of solid particles is decided by a field of fluid velocity; there-
fore, it is necessary to couple it to a fluid flow model.

1.4. Conclusion

EFDC+ is an open source, surface water modeling system developed by DSI, LLC, and
is built upon the original EFDC software developed by Hamrick (1992). EFDC+ includes
many new features and bug fixes over the original EFDC code. This document describes
these new features and provides an overview of the mathematical details in all modules
available in EFDC+.

1.4.1 Eutrophication Module

In 1995, a eutrophication sub-model with full sediment diagenesis (Park et al., 1995)
was added to EFDC+. The original version of this coupled water quality model was
called Hydrodynamic Eutrophication Model Three Dimensional (HEM3D). This original
eutrophication model allowed the simulation of 21 state variables. In 2000 the model was
modified to include “macroalgae” (Tech et al., 2007). The model simulates spatial and
temporal distributions of water quality parameters including dissolved oxygen, suspended
algae (three groups), various components of carbon, nitrogen, phosphorus and silica cycles,
and fecal coliform bacteria. A sediment diagenesis process model with 27 state variables
was also developed for EFDC+. The coupling of the sediment diagenesis model with the
water quality model not only enhances the model’s predictive capability of water quality
parameters but also enables it to simulate the long-term changes in water quality conditions
in response to changes in nutrient loadings.

1.4.2 Lagrangian Particle Tracking Module

Lagrangian Particle Tracking (LPT) was developed as a practical tool for predicting the
transport of discrete particles in a system. Specific applications include the tracking of:

1. Floating objects in rivers, lakes and the sea in general

2. Oil spills

3. Particles or water from a specific source
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Eutrophication Module

Algae Organic 
Carbon Phosphorus Nitrogen Silica DO* COD* FCB* Nutrient

Sediment Fluxes

Predicted (DiToro)

User Specified

Greens

Cyano-bacteria

Diatoms

Macroalgae/Periphyton

Dynamics

Thermal Coupling

Hydrodynamic 
Model

Hydrodynamic 
Model

RPEM TAM*

* DO - Dissolved Oxygen
  COD - Chemical Oxygen Demand
  TAM - Total Active Metals
  FCB - Fecal Coliform Bacteria
  RPEM - Rooted Planted & Epiphyte Model

Fig. 1.6. Structure of the EFDC+ water quality model.

The advantage of this approach is that it is possible to track the process of movement
for each specific particle in more detail and more accurately in comparison with the method
of determining average concentration for grid cells. The unique difficulty for this approach
is that when the number of particles is too large due to LPT depending on the speed of com-
putational processing as well as the large amount of memory to be distributed for the vari-
ables. Fortunately, nowadays the development of information technology both on hardware
and software is considerable and such a problem is completely possible to solve quickly,
especially performing calculations in parallel using multi-core processors . The movement
of solid particles is decided by a field of fluid velocity; therefore, it is necessary to couple
it to a fluid flow model., LLCtprovides an overview of in all available
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Chapter 2

HYDRODYNAMICS

The section is primarily based on Hamrick (1992) and Ji (2008) with updates from DSI
and others. The basic governing equations for the EFDC+ hydrodynamics are presented
and discussed. The primary sources used for this document are:

1. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical
and Computational Aspects (Hamrick, 1992).

2. A User’s Manual for the Environmental Fluid Dynamics Computer Code (EFDC),
(Hamrick, 1996).

3. A Three-dimensional Hydrodynamic-Eutrophication model (HEM3D): Description
of Water Quality and Sediment Processes Submodels (Park et al., 1995).

4. Theoretical and Computational Aspects of Sediment and Contaminant Transport in
the EFDC+ Model (Tech et al., 2002).

5. Sandia National Laboratories Environmental Fluid Dynamics Code: Sediment Trans-
port User Manual (Grace et al., 2008).

2.1. Governing Equations

The fundamental principles of the hydrodynamic model in EFDC+ are the laws of con-
servation for mass, momentum and energy for the flows. With the basic assumption that
ambient environmental flows are characterized by horizontal length scales which are or-
ders of magnitude greater than their vertical length scales, the formulation of the governing
equations begins with the vertically hydrostatic, boundary layer form of the turbulent equa-
tions of motion for an incompressible, variable density fluid. The governing equations of
EFDC+ include Navier-Stokes for fluid flow, the advection-diffusion equations for salinity,
temperature, dye, toxicants, eutrophication constituents and suspended sediment transport
(Hamrick and Wu, 1997; Hamrick, 1992, 1996). In the horizontal direction, the equations
are presented in the curvilinear coordinate system and sigma or sigma-Zed (Craig et al.,
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2014) transformation (at the bed and at the water surface) for the vertical direction. They
are discretized with the finite difference method based on an explicit scheme. Figure 2.1
shows the basic concepts of the EFDC+ model domain.

W
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Evaporation

Wind
Shear

Bottom Shear

Groundwater
DX

DY

Wave

Precipitation

W
V

U

τsy

τsx

τby

τbx

W
V

U

W
V

U

Fig. 2.1. Conceptual overview of the EFDC+ model.

2.1.1 Horizontal and Vertical Coordinate Systems

To accommodate realistic horizontal boundaries, it is convenient to formulate the equa-
tions such that the horizontal coordinates, x and y, are curvilinear and orthogonal.

To provide uniform resolution in the vertical direction, aligned with the gravitational
vector and bounded by bottom topography and a free surface permitting long wave mo-
tion, a time variable mapping or stretching transformation is desirable. The mapping or
stretching is given by

z =
z∗+h
ζ +h

=
z∗+h

H
(2.1)
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where

z is the sigma coordinate (dimensionless)

z∗ is the vertical coordinate with respect to the vertical reference level (datum) (m)

h is the water depth bellow the vertical reference level (m)

ζ is the water surface elevation above the vertical reference level (m)

and Figure 2.2 provides a schematic of the vertical coordinate system in the physical space
in the left panel and the sigma space in the right panel.

Fig. 2.2. The stretched vertical coordinate system.

EFDC+ supports sigma stretched and sigma-zed (SGZ) grids for the vertical discretiza-
tion of water column. Details of the sigma transformation may be found in Blumberg and
Mellor (1987); Hamrick (1986); Vinokur (1974). Details on the sigma-zed vertical layering
options are described in Section 2.1.1.

2.1.2 Basic Hydrodynamic Equations

Transforming the vertically hydrostatic boundary layer form of the turbulent equations
of motion and utilizing the Boussinesq approximation for variable density results in the mo-
mentum and continuity equations and the transport equations for salinity and temperature
in the following form:

The momentum equation in the x direction:

∂

∂ t
(mxmyHu)+

∂

∂x
(myHuu)+

∂

∂y
(mxHvu)+

∂

∂ z
(mxmywu)

−mxmy f Hv−
(

v
∂

∂my
x−u

∂mx

∂y

)
H

=−myH
∂

∂x
(gζ + p+Patm)−my

(
∂h
∂x
− z

∂H
∂x

)
∂ p
∂ z

+
∂

∂x

(
my

mx
HAH

∂u
∂x

)
+

∂

∂y

(
mx

my
HAH pd[u]y

)
+

∂

∂ z

(
mxmy

H
Av

∂u
∂ z

)
−mxmycpDpu

√
u2 + v2 +Su

(2.2)
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The momentum equation in the y direction:

∂

∂ t
(mxmyHv)+

∂

∂x
(myHuv)

+
∂

∂y
(mxHvv)+

∂

∂ z
(mxmywv)+mxmy f Hu+

(
v

∂my

∂x
−u

∂mx

∂y

)
Hu

=−mxH
∂

∂y
(gζ + p+Patm)−mx

(
∂h
∂y
− z

∂H
∂y

)
∂ p
∂ z

+
∂

∂x

(
my

mx
HAH

∂v
∂x

)
+

∂

∂y

(
mx

my
HAH

∂v
∂y

)
+

∂

∂ z

(
mxmy

H
Av

∂v
∂ z

)
−mxmycpDpv

√
u2 + v2 +Sv

(2.3)

The momentum equation in the z direction:

∂ p
∂ z

=−gH
ρ−ρ0

ρ0
=−gHb (2.4)

The continuity equations (internal and external modes)

∂

∂ t
(mxmyζ )+

∂

∂x
(myHu)+

∂

∂y
(mxHv)+

∂

∂ z
(mxmyw) = Sh (2.5)

∂

∂ t
(mxmyζ )+

∂

∂x
(myHU)+

∂

∂y
(mxHV ) = Sh (2.6)

The equation of state
ρ = ρ (p,S,T,C) (2.7)

where

U =
∫ 1

0
udz, V =

∫ 1

0
vdz (2.8)

P = myHu, Q = mxHv (2.9)

and

u, v are the horizontal velocity components in the curvilinear coordinates (m/s)

x, y are the orthogonal curvilinear coordinates in the horizontal direction (m)

z is the sigma coordinate (dimensionless)

t is time (s)

mx, my are the square roots of the diagonal components of the metric tensor (m)

m is the Jacobian, m = mxmy(m2)

p is the physical pressure in excess of the reference density hydrostatic pressure
(m2/s2)

Patm is the barotropic pressure (Pa)
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ρo is the reference water density (kg/m3)

b is the buoyancy

f is the Coriolis parameter (1/s)

AH is the horizontal momentum and mass diffusivity (m2/s)

Av is the vertical turbulent eddy viscosity (m2/s)

cp is the vegetation resistance coefficient (dimensionless)

Dp is the projected vegetation area normal to the flow per unit horizontal area (dimen-
sionless)

Su, Sv are the source/sink terms for the horizontal momentum in the x and y directions,
respectively (m2/s2)

Sh is the source/sink terms for the mass conservation equation (m3/s)

S is salinity (ppt)

T is temperature (◦C)

C is total inorganic suspended solids (TSS) (g/m3),

U, V are the depth averaged velocity components in the x and y directions, respectively
(m/s)

P, Q are the mass flux components in the x and y directions, respectively (m2/s).

The vertical velocity, with physical units, in the stretched, dimensionless vertical coordinate
z is:

w = w∗− z
(

∂ζ

∂ t
+

u
mx

∂ζ

∂x
+

v
my

∂ζ

∂y

)
+(1− z)

(
u

mx

∂h
∂x

+
v

my

∂h
∂y

)
(2.10)

where,

w is the vertical velocity component in sigma coordinate (m/s)

w∗ is the physical vertical velocity (m/s).

The pressure p is the physical pressure in excess of the reference density hydrostatic
pressure, ρogH(1− z), divided by the reference density, ρo. In the momentum equation
(2.2) and (2.3) the momentum source/sink terms Su and Sv will be later modeled as subgrid
scale horizontal diffusion. The density ρ is in general a function of temperature T and
salinity S for hydrospheric flows and water vapor for atmospheric flows. Density can be a
weak function of pressure but will be treated as an incompressible fluid in the continuity
equation under the anelastic approximation (Clark and Hall, 1991; Mellor, 1991). The
buoyancy b as defined in equation (2.4), is the normalized deviation of density from the
reference value. The continuity equation (2.5) has been integrated with respect to z over the
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interval (0,1) to produce the depth integrated continuity equation (2.6) using the vertical
boundary conditions, w = 0, at z = (0,1), which follows from the kinematic conditions
and equation (2.8). It is noted that constraining the free surface displacement to be time
independent and spatially constant, yields the equivalent of the rigid lid ocean circulation
equations employed by Semtner Jr (1974) and equations similar to the terrain following
equations used by Clark (1977) to model mesoscale atmospheric flow.

2.1.3 Equation of State

In case the water density is dependent on temperature and salinity, the UNESCO’s
equation of state reads

ρ =999.842594+6.793952×10−2T−9.095290×10−3T 2 (2.11)

+1.001685×10−4T 3−1.120083×10−6T 4+6.536332×10−9T 5

+
(

0.824493−4.0899×10−3T+7.6438×10−5T 2

−8.2467×10−7T 3+5.3875×10−9T 4
)

S

+
(
−5.72466×10−3+1.0227×10−4T−1.6546×10−6T 2

)
S1.5+4.8314×10−4S2

where

ρ is the water density (kg/m3)

T is the water temperature (◦C)

S is the water salinity (ppt)

With the presence of sediment in the water column, the water density and the buoyancy
are corrected using a correction factor. The correction factor for the water density is

CT SS = 1−
N

∑
j

ρs, jC j +
N

∑
j

(
s j−1

)
ρs, jC j (2.12)

where

CT SS is the correction factor that considers the influence of sediment on water density
(dimensionless)

ρs, j is the sediment density of the sediment class j (kg/m3)

C j is the concentration of the sediment class j (g/m3)

s j is the specific gravity of the sediment class j (dimensionless)

N is the number of sediment classes
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2.1.4 Vertical Turbulent Closure

The system of eight equations from equations (2.2) to (2.10) provides a closed system
for the variables u, v, w, p, ζ , ρ, and C, provided that the vertical turbulent viscosity and
diffusivity, and the source and sink terms are specified. To provide the vertical turbulent
viscosity and diffusivity, the second moment turbulence closure model developed by Mellor
and Yamada (1982) and modified by Galperin et al. (1988) can be used. The model relates
the vertical turbulent viscosity and diffusivity to the turbulent intensity (q) and a turbulent
length scale (l), and a Richardson number Rq by:

The vertical turbulent momentum diffusion coefficient is:

Av = φAA0ql, (2.13)

where φA is the stability viscosity coefficient and can be defined as:

φA =

(
1+Rq/R1

)(
1+Rq/R2

)(
1+Rq/R3

) (2.14)

Additionally, the following definitions for variables in equations (2.13) and (2.14) are
given as:

A0 =A1

(
1−3C1−

6A1

B1

)
=

1

B1/3
1

(2.15)

1
R1

=3A2

(B2−3A2)
(

1− 6A1
B1

)
−3C1 (B2 +6A1)

1−3C1− 6A1
B1

(2.16)

1
R2

=9A1A2 (2.17)

1
R3

=3A2 [6A1 +B2 (1−C3)] . (2.18)

The vertical mass diffusion coefficient is defined as:

Ab = ρKK0ql (2.19)

where φK is the stability diffusivity coefficient given by

φK =
1(

1+Rq/R3
) (2.20)

and K0 is the dimensionless coefficient:

K0 = A2

(
1− 6A1

B1

)
(2.21)
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The Richardson number is found with the following equation

Rq =
gH
q2

l2

H2
∂b
∂ z

(2.22)

where

q2 is the turbulent intensity (m2/s2)

l is the turbulent length scale (m)

Rq is the Richardson number

Mellor and Yamada (1982) specify the constants A1 = 0.92, B1 = 16.6, C1 = 0.08,
A2 = 0.74, and B2 = 10.1. However, the values of R1, R2, R3 calculated by Galperin et al.
(1988) and Kantha and Clayson (1994) are different from Mellor and Yamada (1982) as in
Table 2.1.

Table 2.1. Parameters for different turbulent models.

Formulation K0 R−1
1 R−1

2 R−1
3

Mellor and Yamada (1982) 0.493928 7.846436 34.676400 6.127200

Galperin et al. (1988) 0.493928 7.760050 34.676440 6.127200

Kantha and Clayson (1994) 0.493928 8.679790 30.192000 6.127200

Kantha (2003) 0.490025 14.509100 24.388300 3.236400

The so-called stability functions φA and φK account for the reduced and enhanced ver-
tical mixing or transport in stable and unstable vertically density stratified environments,
respectively. The turbulence intensity and the turbulence length scale are determined by a
pair of Mellor and Yamada (1982) equations:

∂

∂ t

(
mHq2)+ ∂

∂x

(
Pq2)+ ∂

∂y

(
Qq2)+ ∂

∂ z

(
mwq2)

=
∂

∂ z

(
m

Aq

H
∂q2

∂ z

)
2m

Av

H

[(
∂u
∂ z

)2

+

(
∂v
∂ z

)2
]
+2mgAb

∂b
∂ z
−2m

Hq3

B1l
+Sb

(2.23)

∂

∂ t

(
mHq2l

)
+

∂

∂x

(
Pq2l

)
+

∂

∂y

(
Qq2l

)
+

∂

∂ z

(
mwq2l

)
=

∂

∂ z

[
m

Aql

H
∂

∂ z

(
q2l
)]

+mlE1

{
Av

H

[(
∂u
∂ z

)2

+

(
∂v
∂ z

)2
]
+E3gAb

∂b
∂ z

}

−mE2
Hq3

B1

[
1+E4

(
l

κHz

)2

+E5

(
l

κH(1− z)

)2
]
+Sl

(2.24)
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1
L
=

1
H

(
1
z
+

1
1− z

)
, (2.25)

where

E1 = 1.8, E2 = 1.0, E3 = 1.8, E4 = 1.33, and E5 = 0.25 are empirical constants

Sq is the source-sink term for turbulent intensity equation

Sl is the source-sink term for turbulent length scale equation

Aq is the vertical turbulent diffusivity for turbulent intensity equation

Aql is the vertical turbulent diffusivity for turbulent length scale equation.

The vertical diffusivity for turbulence intensity, Aq, is set to 0.2ql following Mellor
and Yamada (1982). For stable stratification, Galperin et al. (1988) suggested limiting the
length scale such that the square root of Rq is less than 0.52. When horizontal turbulent
viscosity, AH and diffusivity are included in the momentum and transport equations, they
are determined independently using Smagorinsky (1963) subgrid scale closure formulation:

AH = ∆x∆y

√(
∂u
∂x

)2

+

(
∂v
∂y

)2

+
1
2

(
∂u
∂y

+
∂v
∂x

)2

, (2.26)

where ∆x, ∆y are the grid sizes in x and y directions, respectively.
The terms Sq and Sl may represent additional source-sink terms such as subgrid scale

horizontal turbulent diffusion, wave, and vegetation effects.

2.2. Boundary Conditions and External Forcings

The vertical boundary conditions for the solution of the momentum equations (2.2)-
(2.3) are based on the specification of the kinematic shear stresses at the free water surface
and at the bed.

Vertical boundary conditions for the turbulent kinetic energy and length scale equations
are:

q2 = B2/3
1

√
t2
sx + t2

sy, l = 0, at z = 1 (2.27)

q2 = B2/3
1

√
t2
bx + t2

by, l = 0, at z = 0 (2.28)

Equation (2.28) can become inappropriate under several conditions associated with high
near bottom sediment concentrations and/or high frequency surface wave activity.
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2.2.1 Bottom Friction

At the bed, the stress components are related to the near bed or bottom layer velocity
components by the quadratic resistance formulation:

1
ρ

[
τxz
tyz

]
=

1
ρ

[
tbx
tby

]
=Cb

√
u2

1 + v2
1

[
u1
v1

]
(2.29)

where the subscript 1 denotes bottom layer values. Under the assumption that the near
bottom velocity profile is logarithmic at any instant of time, the bottom stress coefficient is
given by Nezu (1993).

Cb =

[
κ

ln(∆1/2z0)+(Π−1)

]2

(2.30)

where,

κ is von Karman constant,

∆1 is dimensionless thickness of the bottom layer,

zo = zo ∗/H is dimensionless roughness height, and

Π is wake strength parameter. Π varies from 0 at low Reynolds numbers to 0.2 with
fully turbulent flow. The Π is assumed to be 0.0.

2.2.2 Vegetation

The vegetation impacts on the turbulent intensity and the turbulent length scale are
determined by the transport equations:

∂t(mxmyHq2)+∂x(myHuq2)+∂y(mxHvq2)+∂z(mxmywq2)

=∂z(mxmy
Aq

H
∂zq2)−2mxmy

Hq3

B1l

+2mxmy

(
Av

H

(
(∂zu)

2 +(∂zv)
2
)
+gKv∂zb+∂pcpDp

(
u2 + v2)3/2

)
+Qq

(2.31)

∂t(mxmyHq2l)+∂x(myHuq2l)+∂y(mxHvq2l)+∂z(mxmywq2l)

=∂z

(
mxmy

Aql

H
∂z
(
q2l
))
−mxmyE2

Hlq3

lB1

(
1+E4

(
l

κKz

)2

+E5

(
l

κH (1− z)

)2
)

+mxmyl
(

E1
Av

H

(
(∂zu)

2 +(∂zv)
2
)
+E3gKv∂zb+E1ηpcpDp

(
u2 + v2)3/2

)
+Ql

(2.32)
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where (E1, E2, E3, E4, E5) = (1.8, 1.0, 1.8, 1.33, 0.25). The second term on the last line
of equations (2.31) and (2.32) represents net turbulent energy production by vegetation drag
where νp is a production efficiency factor having a value less than one. The terms Qq and
Ql may represent additional source-sink terms such as subgrid scale horizontal turbulent
diffusion. The vertical diffusivity, Aq is set to 0.2ql following Mellor and Yamada (1982).
For stable stratification, Galperin et al. (1988) suggested limiting the length scale such that
the square root of Rq is less than 0.52. When horizontal turbulent viscosity and diffusivity
are included in the momentum and transport equations, they are determined independently
using Smagorinsky (1963) subgrid scale closure formulation.

2.2.3 Wind Forcings

The influence of wind on hydrodynamics are due to the wind shear stresses exerted on
the water surface. At the free surface, the x and y components of the stress are specified by
the wind stress:

1
ρ

[
τxz
tyz

]
=

1
ρ

[
tsx
tsy

]
=CD

ρa

ρ
Ws

[
Uw
Vw

]
(2.33)

Ws =
√

U2
w +V 2

w (2.34)

where

Ws, Uw and Vw are the wind velocity and x− and y− components of the wind velocity
(m/s) at 10 meters above the water surface, respectively,

CD is the wind drag coefficient, and

ρa and ρw are air and water densities, respectively.

EFDC+ provides three options for wind drag. In case of magnitude sheltering and no
directional sheltering, the original wind drag coefficient can be calculated as

CD =



3.83111×10−5W−3
s −0.000308715W−2

s

+0.00116012W−1
s +0.000899602, Ws < 5m/s

−5.37642×10−6W 3
s +0.000112556W 2

s

−0.000721203Ws+0.00259657, 5m/s =Ws < 7m/s
−3.99677×10−7W 2

s +7.32937×10−5Ws

+0.000726716, Ws = 7m/s

(2.35)

A second option is from European Centre for Medium-Range Weather Forecasts
(ECMWF) which has determined a wind speed-dependent drag coefficient based on the
wave age-dependent surface roughness computed with their coupled atmospheric wave
model (Hersbach, 2011). The wind speed-dependent formulation is given by
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CDN = [c1 + c2 (U10N)
p1]/(U10N)

p2 (2.36)

where c1 = 1.03x10−3, c2 = 0.04x10−3, p1 = 1.48, and p2 = 0.21.

2.2.4 Wave Action

The action of short waves on the field velocity of flow in a large water body could
be an important aspect that may not be ignored, especially in estuaries and coastal areas.
As is commonly known, both longshore currents and undertow are generated by waves.
The asymmetry of wave velocity in its orbital plane is one of the causes of mass transport,
such as sediment. Waves may be generated either by local wind or by distant storms with
longer time periods. In this document, wind-induced wave theory is presented as applied
in EFDC+. In EFDC+, there are two options to include wave effects; 1) by an internal
wind-generated waves sub-model inside EFDC+, and 2) by providing wave parameters are
computed by an external wave model such as SWAN (Team, 2019), REF/DIF (Kirby et al.,
1994), and STWAVE (Smith et al., 2001).

In the case of waves, apart from the forces from currents, it is also necessary to add the
forces from waves for the whole water column, such as radiation stresses or stresses due
to the roller in breaking waves (Mengguo and Chongren, 2003). However, EFDC+ only
considers radiation stresses. The additional wave-induced momentum exerted on the flow
field can be accounted for through wave radiation stresses (Longuet-Higgins and Stewart,
1964):

Sxx = ncos2
θ +n− 1

2
E (2.37)

Sxy = Syx = (ncosθsinθ)E (2.38)

Syy = nsin2
θ +n− 1

2
E (2.39)

where

Sxx, Sxy, Syx, Syy are the components of wave radiation stresses

E is the wave energy (kg/s2)

E =
1
8

ρgH2
S (2.40)

where

Hs is the wave height (m)

θ is the radian measure of the wave direction angle with respect to the x axis (coun-
terclockwise)
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k is the wave number

k =
2π

L
(2.41)

where

L is the wavelength (m)

C is the wave celerity (m/s)

and

n =
1
2

[
1+

2kH
sinh(2kH)

]
(2.42)

In general, the wavelength, L (m), can be computed by solving the non-linear equation
for the dispersion relation shown in equation (2.43).

L =
gT 2

2p
tanh

(
2p
L

H
)

(2.43)

This dispersion relation can be solved for the wavelength using approximations or itera-
tive methods, for example, EFDC+ computes wavelength by using an approximate formula
(Hunt, 1979):

L≈ T

√
1
d

gH, (2.44)

where
d = γ +

1
(1+0.6522γ +0.4622γ2 +0.0864γ4 +0.0675γ5)

, (2.45)

and
γ = ω

2 H
g

(2.46)

where ω is the wave angular frequency (1/s)

ω =
2π

T
. (2.47)

The regime of flow is determined through the wave Reynolds number Rw, and the rela-
tive bed roughness r :

Rw =
UbA

ν
, r =

A
ks

(2.48)

in which A is the semi-orbital excursion, ks the Nikuradse equivalent sand grain roughness,
and Ub is the wave maximum orbital velocity near the bed.

A =
Hs

2sinh(kH)
(2.49)

Ub = Aω =
ωHs

2sinh(kH)
(2.50)
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The bottom friction, the bed forms (such as ripples) and the characteristics of bed ma-
terials are strongly interdependent in case of wave actions. The friction coefficient due to
waves according to Swart (1974) is given in equation (2.51).

fw =

{
exp
(
5.21r−0.19−6.0

)
r > 1.57

0.3r r = 1.57
(2.51)

2.2.5 Local Wind-Generated Waves

The force applied by wind constitutes an important mechanism which drives the hy-
drodynamic processes as well as sediment transport in lakes, estuaries, and coastal areas.
Wind effects can not only induce the flow current through the vertical boundary condi-
tions at water surface, but also generate surface waves with wave height of several meters.
Consequently, the calculation of the total bed shear stress should take the wave factor into
account.

Waves with periods of 3 to 25 seconds are primarily caused by winds. Therefore, wind-
generated waves play an important role in hydrodynamic modeling. The advantage of
this wind-wave sub-model is that it can be easily incorporated into the source code of
a hydrodynamic model instead of running a separate wave model. This means that the
changes in hydrodynamic parameters are immediately updated in the wave calculations.
Additionally, the calculation time is reduced compared to other wave models.

The theoretical basis and tests of the wind wave sub-model that is incorporated into
EFDC+ is presented in detail. The mathematical formulae are empirical equations called
the SMB (Sverdrup, Munk and Bretschneider) model (Ji, 2008). The model calibration is
based on the experiment of Cox et al. (1996) for a wave flume. Another verification of the
sub-model is the comparison of wave heights computed by the model with those generated
by SWAN (Team, 2019) for the same wind condition in Caloosahatchee Estuary.

The basic assumptions of the SMB model for wind-generated waves are; a) the duration
of wind blowing along one direction is long enough to attain the equilibrium condition, and
b) the wind speed and water depth are spatially uniform over the fetch. The main wave
parameters can be determined including wave height, wave direction and wave period. For
the SMB model, the wave direction is the same as the wind direction. This means that the
effects of refraction, diffraction and reflection are not considered. Wave height and period
can be defined as:

Hs = 0.283a
W 2

s
g

tanh

(
0.0125

α

(
gF
W 2

s

)0.42
)

(2.52)

Tp = 7.54β
Ws

g
tanh

(
0.077

β

(
gF
W 2

s

)0.25
)

(2.53)
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where

α = tanh

{
0.53

(
gH
W 2

s

)0.75
}

(2.54)

β = tanh

{
0.833

(
gH
W 2

s

)0.375
}

(2.55)

in which

Hs is the wave height (m)

Tp is the wave period (s)

H is the water depth (m)

Ws is the wind velocity (m/s)

F is the fetch length from the land boundary to the cell in the upwind direction (m);
F is calculated for 16 directions

2.2.6 Harmonic Forcings

The open boundary conditions in EFDC+ support a combination of forcings defined as
a time series and harmonic forcings. This allows to model the situations in estuaries or
coastal areas where the influences of tides and river flows or storm surges may happen.

The harmonic representation of a time series ζ (t) can be approximated as a combination
of sine and cosine functions:

ζ (t) = ζ0(t)+a0 +
N

∑
k=1

[akcos(ωkt) +bksin(ωkt)] (2.56)

where

t is the time (s)

ζ0(t) is the residual signal other than the periodic components (m)

a0 is the mean value of the periodic components (m)

N is the number of the harmonic constituents

ak, bk are the harmonic constant of the constituent k (m)

ωk is the angular speed of constituent k (radians/s)

Here,

ωk =
2π

Tk
(2.57)
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where Tk is the period constituent k (s).
Equation (2.56) can be also rewritten in another common form as

ζ (t) = ζ0(t)+a0 +
N

∑
k=1

Akcos(ωkt−φk) (2.58)

where Ak is the amplitude of the harmonic constituent k (m):

Ak =
√

a2
k +b2

k (2.59)

and φk is the phase lag the harmonic constituent k (radians):

fk = arctan
(

bk

ak

)
(2.60)

2.2.7 Hydraulic Structures

Hydraulic structures can be modeled in EFDC+ by rating curves or hydraulic equations.
A rating curve is a lookup table which presents a relationship between the flow rate through
a structure and the water heads. Depending on the actual water heads of the structure at
a certain time step, the flow rate is determined using the lookup table. EFDC+ allows a
variety of rating curves by which the flow discharge can be determined from; a) upstream
water depth, b) the head difference (between upstream and downstream), c) the head dif-
ference and flow accelerations, d) the upstream and downstream water surface elevations,
e) upstream water depth for a low chord structure, and f) head difference for a low chord
structure.

The last two types of rating curves use low chord structures such as bridges. With the
low chord structures, when flows are below the deck, they may be bi-directional, i.e., flows
can be going upstream or downstream. However, once the bridge is overtopped, flows only
go from upstream to downstream.

2.2.7.1 Rating Curves

If the flow through a structure is uni-directional, i.e., the flow direction is from upstream
to downstream of the structures only. The rating curve is a lookup table which composes
of a single column for water head and a corresponding single column for flow rate.

If the flow through a structure is bi-directional, the rating curve is a two-dimensional
lookup table where the flow rates can be determined based on both upstream and down-
stream water surface elevations.

Beside using lookup tables, EFDC+ can also simulate internally different types of hy-
draulic structures. This allows the user to model hydraulic structures rapidly and with ease
in EFDC+. The built-in modeling codes for hydraulic structures inside EFDC+ includes
culverts, weirs, sluice gates, and orifices.
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2.2.7.2 Culverts

Flow rate through a culvert or sluice gate is calculated in EFDC+ based on the water
levels at both sides of the structure at its configuration. In a tidal region, the water levels on
two sides of the structure are constantly changing, which can result in bi-directional flows.
The characteristics of flow through a culvert are complicated and are determined by the inlet
geometry, slope, shape, size, roughness, approach, and headwater and tailwater conditions.
Dill (2011) described six different types of culvert flows based on the location of the control
section within the culvert and the relative elevations of the headwater, tailwater, and culvert
invert and crown elevations. The discharge through a culvert can be expressed as:

Q = AV = AC
√

RS = K
√

S (2.61)

where Q is the flow discharge (m3/s), A is the cross-sectional flow area (m2), R is the
hydraulic radius (m), S is the culvert slope (fraction), K is the conveyance (m3/s), and C is
the Chézy coefficient (m0.5/s) which can be calculated by using the Manning’s formula

C =
1
n

R
1
6 (2.62)

where n is Manning’s roughness coefficient.
Four distinct conditions arise depending on elevation of the tailwater and headwater

compared to the height of the culvert. The handling of these conditions are described in
case “a” through “d” below:

a) If the tailwater is greater than the culvert height or the headwater is greater than 1.5
times the culvert height, the culvert outlet is submerged, and the culvert is assumed
to flow full. The slope is estimated as the difference in headwater and tailwater
elevation divided by the culvert length, L (m), the conveyance is determined for the
full culvert, and discharge is calculated by equation (2.61).

b) If both the inlet and outlet are not submerged, the critical depth (yc) is computed,
assuming free flow through the culvert inlet. In this case, it is assumed the approach
velocity is negligible so that total energy at the culvert inlet is equal to the headwater.
Thus,

HHW = yc +
V 2

c
2g

(2.63)

where

HHW is the headwater (m),

V c is the critical velocity (m/s)

yc is the critical depth (m)

g is acceleration due to gravity
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In the case of critical flow through the culvert:

V 2
c

2g
=

D
2

(2.64)

where D is the hydraulic depth (m):

D =
A
T

(2.65)

and T is the flow top width (m). Combining equations (2.63) and (2.64) yields an
expression for the critical depth,

yc = HHW −
D
2

(2.66)

where HTW is the tailwater (m).

Once the critical depth is determined, the critical velocity Vc, critical discharge Qcr,
and critical slope Scr are also calculated. The critical discharge represents the maxi-
mum possible flow through the culvert for the given headwater as shown in equation
(2.67)

Qcr =VcA (2.67)

If the culvert slope is greater than the critical slope, the culvert can convey more flow
than the inlet will allow. As such, the inlet controls the flow and the discharge is
assumed to be equal to the critical discharge Qcr calculated as equation (2.67).

c) If the culvert slope is less than the critical slope, the control section may be at the
culvert outlet or downstream of the culvert. The critical depth is then compared to the
tailwater, and if the tailwater is greater than the critical depth, the tailwater elevation
is used to determine the flow area and hydraulic radius, and the flow through the
culvert is calculated using the equation (2.61).

d) If the tailwater depth is less than the critical depth, but the slope is less than the crit-
ical slope, it is assumed that uniform flow will occur within the culvert. In this case
potential energy is balanced by head loss due to friction in the culvert and conserva-
tion of energy between the control section and inlet can be expressed as;

HHW = yn +
V 2

2g
(2.68)

where yn is the normal depth (m) in the culvert and V is the average velocity at the
control section. It is also assumed that the approach velocity is negligible, and the
slope is small such that the normal depth is approximately equal to the vertical depth.
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Equation (2.61) can be re-written as an expression of the velocity head at the control
section as;

V =
1
n

R
2
3
√

S (2.69)

Combining equations (2.68) and (2.69) yields an equation for the normal depth

yn = HHW −
1
2g

1
n2 R

4
3 S (2.70)

Because R is a function of depth, an adaptive procedure is employed to determine
the normal depth. In culverts that experience bi-directional flow, the slope may be
adverse or zero. In either case, the assumption of uniform flow is problematic be-
cause the water surface slope cannot be equal to the culvert slope. In this case, the
water surface slope, as determined from the difference in headwater and tailwater
elevations, is used in the equation (2.70).

2.2.7.3 Weirs

A general formula for free flow through a weir can be expressed as

Q =CdW
√

2gH3
HW (2.71)

where W is the width of weir (m) and Cd is the weir discharge coefficient. This coeffi-
cient depends on the type of weir (broad crested or sharp-/narrow-crested, ogee), shape of
opening (rectangular, triangular, trapezoidal), and other weir parameters.

For submerged flow through a weir, an adjustment factor is applied to the equation
(2.71) to account for the submergence, and is given by the equation (2.72) (Villemonte,
1947).

Q =

(
1− HTW

HHW

)0.385

CdW
√

2gH3
HW (2.72)

2.2.7.4 Sluice Gates

Flow through a sluice gate can be characterized by two basic parameters; the tran-
quility of the flow (i.e., subcritical or supercritical flow), and the water depth (i.e., gate is
submerged or not). For supercritical weir flow, the equation (2.73) is used

Q =C1W

√
g
(

2
3

HHW

)3

(2.73)

and for subcritical weir flow, equation (2.74) is used.
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Q =C2WHTW
√

2g(HHW −HTW ) (2.74)

where

C1 is the supercritical discharge coefficient

C2 is the subcritical discharge coefficient

HHW is the headwater (m)

HTW is the tailwater (m)

W is the width of the gate (m)

g is acceleration due to gravity

When the water surface is determined to be below the top of the gate, the gate is mod-
eled as a broad crested weir and equation (2.71) is used. When the gate is submerged, the
appropriate equation for either free sluice flow (supercritical) or submerged orifice flow
(subcritical) is applied. To determine the flow through the sluice gate at a given model time
step, the headwater is compared to the tailwater.

For free sluice flow the equation (2.75) is used:

Q =C3A
√

2gHHW (2.75)

Similarly, for submerged orifice flow equation (2.76) is used.

Q =C4A
√

2g(HHW −HTW ) (2.76)

where

C3 is the discharge coefficient for free sluice flow,

C4 is the discharge coefficient for submerged orifice flow, and

A is the gate opening (m2).

If the ratio of tailwater to headwater is less than 0.64, equation (2.72) for supercritical
flow is applied. If the ratio of tailwater to headwater is greater than 0.68, equation (2.73) for
subcritical flow is applied. This is either a free sluice for supercritical flow, or a submerged
orifice for subcritical flow. In cases when the tailwater to headwater ratio is between 0.64
and 0.68 both discharges are computed and a weighted average of the two is used.

2.2.7.5 Orifices

If the headwater is lower than the opening of a orifice, the flow through the orifice is
treated as weir flow, and the equation (2.71) is used. If the tailwater is higher than the
opening of an orifice, then equation (2.76) submerged flow through the orifice is applied.
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If the headwater is higher than the opening of an orifice but the tailwater is lower than the
opening of an orifice, the free jet flow through the orifice is calculated as

Q =C2A
√

2g(HHW +0.5B) (2.77)

where B is the height of orifice opening (m), and HHW is calculated based on the center line
of the orifice.

2.3. Numerical Solution for the Equations of Motion

The equations of motion, shown previously in equations (2.2) and (2.3) will be solved
in a region subdivided into six faced cells. The projection of the vertical cell boundaries to
a horizontal plane forms a curvilinear, orthogonal grid in the orthogonal coordinate system
(x,y). In a vertical (x,z) or (y,z) plane, the cells bounded by the same constant z surfaces
will be referred to as celllayers. The equations will be solved using a combination of finite
volume and finite difference techniques, with the variable locations shown in Figure 2.3.

Fig. 2.3. Free surface displacement centered horizontal grid.

The staggered grid location of variables is often referred to as the Arakawa C grid
(Arakawa and Lamb, 1977) or the MAC grid (Peyret and Taylor, 1983). To proceed, it is
convenient to modify equations (2.2) and (2.3) by eliminating the vertical pressure gradi-
ents using equation (2.4). After some manipulation, the horizontal momentum equations
are given in the equations (2.78) and (2.79).
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∂

∂ t
(mxmyHu)+

∂

∂x
(myHuu)+

∂

∂y
(mxHvu)+

∂

∂ z
(mxmywu)

−
(

v
∂my

∂x
−u

∂mx

∂y

)
Hv−mxmy f Hv

=−myH
∂ p
∂x
−myHg

∂ζ

∂x
+myHgb

∂h
∂x
−myHgbz

∂H
∂x

+
∂

∂ z

(
mxmyAv

H
∂u
∂ z

)
+Su

(2.78)

∂

∂ t
(mxmyHv)+

∂

∂x
(myHuv)+

∂

∂y
(mxHvv)+

∂

∂ z
(mxmywv)

+

(
v

∂my

∂x
−u

∂mx

∂y

)
Hu+mxmy f Hu

=−mxH
∂ p
∂y
−mxHg

∂ζ

∂y
+mxHgb

∂h
∂y
−mxHgbz

∂H
∂y

+
∂

∂ z

(
mxmyAv

H
∂v
∂ z

)
+Sv

(2.79)

First, the vertical discretization of equations (2.78) and (2.79) is performed. The equa-
tions are integrated with respect to z over a cell layer assuming that vertically defined
variables (at the cell or layer centers) are constant. Additionally, these variables must be
defined vertically at the cell layer interfaces or boundaries. Using the notation for mass
fluxes,

Pk = myHuk,Qk = mxHvk (2.80)

equations (2.78) and (2.79) are redefined as;

∂

∂ t
(mxPk∆k)+

∂

∂x
(Pkuk∆k)+

∂

∂y
(Qkuk∆k)+m

[
(wu)k− (wu)k−1

]
−
(

vk
∂my

∂x
−uk

∂mx

∂y

)
Hvk∆k−my f Qk∆k

=− 1
2

myHDeltak
∂

∂x
(pk + pk−1)−myH∆kg

∂ζ

∂x
+myH∆kgbk

∂h
∂x

−0.5myH∆kgbk (zk + zk−1)
∂H
∂x

+m
[
(τxz)k− (τxz)k−1

]
+(Su∆)k

(2.81)
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∂

∂ t
(myQk∆k)+

∂

∂x
(Pkvk∆k)+

∂

∂y
(Qkvk∆k)

+m
[
(wv)k− (wv)k−1

]
+

(
vk

∂my

∂x
−uk

∂mx

∂y

)
Huk∆k +mx f Pk∆k

=− 1
2

mxH∆k
∂

∂y
(pk + pk−1)−mxH∆kg

∂ζ

∂y
+mxH∆kgbk

∂h
∂y

−0.5mxH∆kgbk (zk + zk−1)
∂H
∂y

+m
[
(tyz)k−m(tyz)k−1

]
+(Sv∆)k

(2.82)

where ∆k is the vertical cell or layer thickness, and the turbulent shear stresses at the cell
layer interfaces are defined by:

(τxz)k =
2
H
(Av)k

uk+1−uk

∆k+1 +∆k
(2.83)

(tyz)k =
2
H
(Av)k

vk+1− vk

∆k+1 +∆k
(2.84)

If there are K cells in the z direction, the hydrostatic equation can be integrated from a
cell layer interface to the surface to give:

pk = gH

(
K

∑
j=k

b j∆ j−bk∆k

)
+ ps (2.85)

where ps is the physical pressure at the free surface or under the rigid lid divided by the
reference density. The continuity equation (2.5) is also integrated with respect to z over a
cell or layer to give:

∂

∂ t
(mζ ∆k)+

∂

∂x
(Pk∆k)+

∂

∂y
(Qk∆k)+m(wk +wk−1) = Sh (2.86)

The numerical solution of the vertically discrete momentum equations (2.78) and (2.79)
proceeds by splitting the external depth integrated mode (associated with external long
surface gravity waves from) the internal mode (associated with vertical current structure).

The external mode equations are obtained by summing equations (2.78) and (2.79) over
K cells or layers in the vertical utilizing equation (2.85), and are given by:
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∂

∂ t

(
mxP̂

)
+

K

∑
k=1

[
∂

∂x
(Pkuk∆k)+

∂

∂y
(Qkuk∆k)−

(
vk

∂my

∂x
−uk

∂mx

∂y

)
Hvk∆k−my f Qk∆k

]
=−myHg

∂ζ

∂x
−myH

∂ ps

∂x
+myHgb̂

∂h
∂x
−myHg

[
K

∑
k=1

(
βk∆k +

1
2
(zk + zk−1)bk∆k

)]
∂H
∂x

−mygH2 ∂

∂x

(
K

∑
k=1

βk∆k

)
+m [(τxz)K− (τxz)0]+ Ŝu

(2.87)

∂

∂ t

(
mxQ̂

)
+

K

∑
k=1

[
∂

∂x
(Pkvk∆k)+

∂

∂y
(Qkvk∆k)−

(
vk

∂my

∂x
−uk

∂mx

∂y

)
Huk∆k−mx f Pk∆k

]
=−mxHg

∂ζ

∂y
−mxH

∂ ps

∂y
+mxHgb̂

∂h
∂y
−mxHg

[
K

∑
k=1

(
βk∆k +

1
2
(zk + zk−1)bk∆k

)]
∂H
∂y

−mxgH2 ∂

∂y

(
K

∑
k=1

βk∆k

)
+m

[
(τyz)K− (τyz)0

]
+ Ŝu

(2.88)

∂

∂ t
(mζ )+

∂

∂x
P̄+

∂

∂y
Q̄ = Sh (2.89)

where the over bar indicates an average over the depth as reiterated in equation (2.90).
Additionally, equation (2.91) is introduced to simplify equations (2.87) and (2.88).

P̂ = myHû, Q̂ = mxHv̂ (2.90)

βk =
K

∑
j=k

b j∆ j−
1
2

bk∆k (2.91)

The depth integrated continuity equation, equation (2.89), follows from equation (2.6)
and provides the continuity constraint for the external mode. Consistent with the form of
equation (2.89) the external mode variables will be chosen to be the free surface displace-
ment, ζ , and the volumetric transports P = myHu and Q = mxHv. Details of the solution
of the external mode equations (2.87) to (2.89) are presented in Section 2.4.

Several formulations are possible for the internal mode equations. Equations (2.78)
and (2.79) have K degrees of freedom for each of the horizontal velocity components.
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However, the summation of these equations over K cells or layers in the vertical to form
the external mode equations (2.87) and (2.88) effectively removes a degree of freedom
since the constraints:

K

∑
k=1

uk∆k = û (2.92)

K

∑
k=1

vk∆k = v̂ (2.93)

must be satisfied. One approach to the internal mode is to solve equations (2.78) and (2.79)
using the free surface slopes, or the surface pressure gradients in the rigid lid case, from the
external solution and distribute the error such that equations (2.92) and (2.93) are satisfied.
A second approach is to form equations for the deviations of the velocity components from
their vertical means by subtracting the external equations (2.87) and (2.88) from the layer
integrated equations (2.78) and (2.79). However, it will still be necessary to satisfy the
constraints (2.92) and (2.93). The approach proposed herein is to reduce the systems of K
layer averaged equations (2.81) and (2.82) to systems of K−1 equations and use equations
(2.92) and (2.93) to provide the Kth equation consistent with the actual degrees of freedom.

The internal mode equations are formed by first dividing equations (2.81) and (2.82)
by the cell layer thickness (∆k). Next, the equations for cell layer k is subtracted from the
equations for cell layer k+1. The resulting equation from these two operations is divided
by the average thickness (∆k+1,k) of the two cell layers resulting in:

∂

∂ t

(
mx

Pk+1−Pk

∆k+1,k

)
+

∂

∂x

(
Pk+1uk+1−Pkuk

∆k+1,k

)
+

∂

∂y

(
Qk+1uk+1−Qkuk

∆k+1,k

)
+

m
∆k+1,k

[
(wu)k+1− (wu)k

∆k+1
−

(wu)k− (wu)k−1

∆k

]
−my f

Qk+1−Qk

∆k+1,k

− 1
∆k+1,k

[(
vk+1

∂my

∂x
−uk+1

∂mx

∂y

)
Hvk+1−

(
vk

∂my

∂x
−uk

∂mx

∂y

)
Hvk

]
= myH

bk+1−bk

∆k+1,k
g
(

∂h
∂x
− zk

∂H
∂x

)
+

1
2

myH2

∆k+1,k
g
(

∆k+1
∂bk+1

∂x
+∆k

∂bk

∂x

)
+

m
∆k+1,k

[
(τxz)k+1− (τxz)k

∆k+1
−

(τxz)k− (τxz)k−1

∆k

]
+

(Su)k+1− (Su)k

∆k+1,k

(2.94)
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∂

∂ t

(
my

Qk+1−Qk

∆k+1,k

)
+

∂

∂x

(
Pk+1vk+1−Pkvk

∆k+1,k

)
+

∂

∂y

(
Qk+1vk+1−Qkvk

∆k+1,k

)
+

m
∆k+1,k

[
(wv)k+1− (wv)k

∆k+1
−

(wv)k− (wv)k−1

∆k

]
+mx f

Pk+1−Pk

∆k+1,k

+
1

∆k+1,k

[(
vk+1

∂my

∂x
−uk+1

∂mx

∂y

)
Huk+1−

(
vk

∂my

∂x
−uk

∂mx

∂y

)
Huk

]
=mxH

bk+1−bk

∆k+1,k
g
(

∂h
∂y
− zk

∂H
∂y

)
+

1
2

mxH2

∆k+1,k
g
(

∆k+1
∂bk+1

∂y
+∆k

∂bk

∂y

)
+

m
∆k+1,k

[
(τyz)k+1− (τyz)k

∆k+1
−

(τyz)k− (τyz)k−1

∆k

]
+

(Sv)k+1− (Sv)k

∆k+1,k

(2.95)

∆k+1,k =
1
2
(∆k+1 +∆k) (2.96)

Inspection of equations (2.94) and (2.95) reveals that they could have also been obtained
by differentiating the horizontal momentum equations (2.78) and (2.79) with respect to z
and introducing a finite difference discretion in z. Using equations (2.83) and (2.84) to
relate the shear stresses to the velocity differences across the interior interfaces suggests
that the equations (2.94) and (2.95) be interpreted as a system of K−1 equations for either
the K − 1 interfacial velocity differences or the K − 1 interior interfacial shear stresses.
Details of the solution of the internal mode equations (2.94) and (2.95) will be presented in
Section 2.5.

The solution of the vertical velocity, w, employs the continuity equations. Dividing
equation (2.86) by ∆k, and subtracting equation (2.88) yields

wk = wk−1−
∆k

m

[
∂

∂x

(
Pk− P̂

)
+

∂

∂y

(
Qk− Q̂

)]
. (2.97)

Since wo = 0, the solution proceeds from the first cell layer to the surface. Provided the
constraints (equations (2.92) and (2.93)) are satisfied, the surface velocity at k = K will be
zero and satisfy the boundary condition.

2.4. Computational Aspects of the Three Time Level External Mode Solution

The formulation of a computational algorithm for the numerical solution of the external
mode equations (2.87) to (2.89) begins by introducing modified variables and reorganizing
the equations to give:
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∂ P̂
∂ t

=−
my

mx
Hg

∂ζ

∂x
−

my

mx
H

∂ ps

∂x
+

my

mx
Hg

(
b̂

∂h
∂x
− B̂

∂H
∂x
−H

∂ β̂

∂x

)

− 1
mx

K

∑
k=1

∆k

(
∂

∂x
(Pkuk)+

∂

∂y
(Qkuk)

)
+

1
mx

K

∑
k=1

∆k

[(
vk

∂my

∂x
−uk

∂mx

∂y

)
Hvk +my f Qk

]
+

1
mx

K

∑
k=1

[
∂

∂x

(
my

mx
HAHk∆k

∂uk

∂x

)
+

∂

∂y

(
mx

my
HAHk∆k

∂uk

∂y

)]
+my(τxz)K−my(τxz)0 +

1
mx

Ŝu

(2.98)

∂ Q̂
∂ t

=−mx

my
Hg

∂ζ

∂y
− mx

my
H

∂ ps

∂y
+

mx

my
Hg

(
b̂

∂h
∂y
− B̂

∂H
∂y
−H

∂ β̂

∂y

)

− 1
my

K

∑
k=1

k

(
∂

∂x
(Pkvk)+

∂

∂y
(Qkvk)

)
+

1
my

K

∑
k=1

∆k

[(
vk

∂my

∂x
−uk

∂mx

∂y

)
Huk +mx f Pk

]
+

1
my

K

∑
k=1

[
∂

∂x

(
my

mx
HAHk∆k

∂vk

∂x

)
+

∂

∂y

(
mx

my
HAHk∆k

∂vk

∂y

)]
+mx(τyz)K−mx(τyz)0 +

1
my

Ŝv

(2.99)

∂ζ

∂ t
+

1
m

(
∂ P̂
∂x

+
∂ Q̂
∂y

)
= Sh (2.100)

where

β̂ =
K

∑
k=1

βk∆k (2.101)

β̂ =
K

∑
k=1

[
βk∆k +

1
2
(zk + zk−1)bk∆k

]
. (2.102)

Equations (2.98) and (2.99) now equate the time rate of change of the external or depth
integrated volumetric transports to the pressure gradients associated with the free surface
slope, atmospheric pressure and buoyancy, the advective accelerations, the Coriolis and cur-
vature accelerations, the free surface and bottom tangential stresses, and the general source,
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sink terms. The staggered location of variables on the computational grid, Figure 2.3, al-
lows most horizontal spatial derivatives in equations (2.98) to (2.100) to be represented
by second order accurate central differences and results in conservation of volume, mass,
momentum and energy in the limit of exact integration of the equations in time (Haltiner
and Williams, 1980; Simons et al., 1973). When a variable is not located at a point required
for implementation of central difference operators, averaging in either or both spatial direc-
tions is appropriate. The use of the spatial averaging scheme of Arakawa and Lamb (1977)
to represent the Coriolis and curvature accelerations also guarantees energy conservation.

Following the introduction of discrete finite difference and averaging representations
in space, equations (2.98) to (2.100), for a horizontal grid of L cells, may be viewed as
a system of 3L ordinary differential equations in time for the volumetric transport and
the free surface displacement. The numerous techniques available to solve these equa-
tions generally fall within the categories of explicit and semi-implicit. The most frequently
used explicit scheme is the three-time level leapfrog scheme where the time derivatives are
approximated between the time levels n+ 1 and n− 1, and the remaining terms are eval-
uated at time level n. Although computationally simple to implement, the maximum time
step is restricted by the Courant-Fredrick-Levy condition based on the gravity wave phase
speed. An alternate approach allowing larger time steps is the semi-implicit three-time
level scheme (Madala and Piacseki, 1977), which when implemented for equations (2.98)
to (2.100) is

P̂n+1 = P̂n−1−∆t
(

my

mx
H
)u

gdu
x
(
ζ

n+1 +ζ
n−1)−2∆t

(
my

mx
H
)u

du
x ps

+2∆t
(

my

mx
H
)u

g
(

b̂udu
x h− B̂udu

x H−Hudu
x β̂

)
−2∆t

(
1

mx

)u K

∑
k=1

∆k
[
du

x (Pkuk)+du
y (Qkuk)

]
+2∆t

(
1
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)u K

∑
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∆k

[(
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∂my

∂x
−uk

∂mx

∂y

)
Hvk +my f Qk

]u

+2∆tmu
y
[(

tn−1
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)

K−
(
tn−1
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)

0

]u
+2∆t

(
1
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)u K

∑
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[
∂

∂x

(
myHtn−1

xx
)
+

∂

∂y

(
mxHtn−1

xy
)

+
∂

∂y

(
mxHtn−1

xy
)
− ∂

∂x

(
myHtn−1

yy
)]u

k

(2.103)
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Q̂n+1 = Q̂n−1−∆t
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(2.104)

ζ
n+1−ζ

n−1 +∆t
(

1
m

)ζ [
δ

ζ
x
(
P̂n+1 + P̂n−1)+δ

ζ
y
(
Q̂n+1 + Q̂n−1)]= Sh∆t (2.105)

where ∆t indicates the time step. All terms in equations (2.103) to (2.105) are understood to
be evaluated at the center time level n except those evaluated at the forward and backward
time levels, n+ 1 and n− 1, which are denoted by superscripts. The u, v, and ζ super-
scripts indicate that a variable is evaluated, or that a spatial derivative is centered, at the
corresponding spatial point.

The subscript of the spatial central difference operator δ indicates direction. The grid
cells are presumed to be bounded in the horizontal by lines of constant integer values of the
dimensionless orthogonal coordinates x and y, resulting in the central spatial differences
having the forms given in equations (2.106) and (2.107).

δx
(
φi, j,k

)
=

1
∆x

(
φi+ 1

2 , j,k
−φi− 1

2 , j,k

)
(2.106)

δy
(
φi, j,k

)
=

1
∆y

(
φi, j+ 1

2 ,k
−φi, j− 1

2 ,k

)
(2.107)

Application of these finite difference operators to the advective accelerations is illus-
trated by,

δ
u
x
(
Pi, j,kui, j,k

)
=

1
∆x

(
Pi+ 1

2 , j,k
ui+ 1

2 , j,k
−Pi− 1

2 , j,k
ui− 1

2 , j,k

)
, (2.108)
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where the constant y dependence of the variables is implied. Since the u type variables
are located at integer values of x, averaging is necessary to obtain values at half intervals.
Averaging both the transport and the velocity yields,

δ
u
x
(
Pi, j,kui, j,k

)
=

1
∆x

(
Pi+1, j,k +Pi, j,k

2
ui+1, j,k +ui, j,k

2
−

Pi, j,k +Pi−1, j,k

2
ui, j,k +ui−1, j,k

2

)
,

(2.109)

which is consistent with a central difference approximation of the non-conservative form of
this portion of the advective acceleration. Averaging the transport and allowing the velocity
to be advected from the upwind direction gives,

δ u
x
(
Pi, j,kui, j,k

)
= 1

∆x

[
max

(
Pi+1, j,k+Pi, j,k

2 ,0
)

un−1
i, j,k−max

(
Pi, j,k+Pi−1, j,k

2 ,0
)

un−1
i−1, j,k

]
+ 1

∆x

[
min

(
Pi+1, j,k+Pi, j,k

2 ,0
)

un−1
i+1, j,k−min

(
Pi, j,k+Pi−1, j,k

2 ,0
)

un−1
i, j,k

]
(2.110)

which is consistent with an upwind or backward difference approximation of the non-
conservative form of this portion of the advective acceleration. In equation (2.110), the
transport is still at time level n, while the velocity is at time level n−1, for both stability and
accuracy (Smolarkiewicz and Clark, 1986). The preference for the use of equation (2.109)
or equation (2.110) will generally depend upon the physical situation being simulated. The
central difference form introduces no numerical diffusion, but may produce solution fields
which exhibit cell to cell spatial oscillations. These oscillations can be eliminated by the
addition of horizontal diffusion terms to the momentum equations. Specification of the
horizontal diffusivity allows the degree of spatial smoothing to be controlled. The upwind
difference form introduces numerical diffusion and does not produce spatial oscillations in
the solution field. The Coriolis and curvature terms in equations (2.103) and (2.104) are
discretized using an energy conserving spatial averaging and differencing (Arakawa and
Lamb, 1977; Haltiner and Williams, 1980). For example, the Coriolis and curvature term
in equation (2.103) is given by:

[
my f Qk +

(
vk

∂my

∂x
−uk

∂mx

∂y

)
Hvk

]u

=
1
2

[
(RH)

ζ

i+ 1
2 , j

vζ

i+ 1
2 , j,k

+(RH)
ζ

i− 1
2 , j

vζ

i− 1
2 , j,k

]
(2.111)

Rζ

i+ 1
2 , j

= (m f )i+ 1
2 , j

+
(my)i+1, j− (my)i, j

∆x
vζ

i+ 1
2 , j,k
−

(mx)i+ 1
2 , j+

1
2
− (mx)i+ 1

2 , j−
1
2

∆y
uζ

i+ 1
2 , j,k

(2.112)
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vζ

i+ 1
2 , j,k

=
1
2

(
vi+ 1

2 , j+
1
2 ,k

+ vi+ 1
2 , j−

1
2 ,k

)
(2.113)

uζ

i+ 1
2 , j,k

=
1
2
(
ui+1, j,k +ui, j,k

)
(2.114)

where the variables locations are shown in Figure 2.4.

Fig. 2.4. U-centered grid in the horizontal (x, y) plane.

Since the bottom tangential stresses in equations (2.103) and (2.104) must be supplied
from the internal mode solution which follows the external solution, it is lagged at the back-
ward time level. The general source, sink term has been replaced by horizontal diffusion
terms having the form proposed by Mellor and Blumberg (1985). The horizontal stress
tensors are shown in equations (2.115) to (2.117).

(τxx)k = 2AH
1

mx

∂uk

∂x
(2.115)

(τxy)k = (tyx)k = 2AH

(
1

mx

∂vk

∂x
+

1
my

∂uk

∂y

)
(2.116)
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(tyy)k = 2AH
1

my

∂vk

∂y
. (2.117)

The horizontal diffusion coefficient, AH , is often specified as a minimum constant value
necessary to smooth cell to cell spatial oscillations in the solution field when the central
difference form of the advective acceleration, equation (2.109) is used. When the horizontal
turbulent diffusion is used to represent subgrid scale mixing, AH may be determined as
suggested by (Smagorinsky, 1963).

The solution scheme for equations (2.103) to (2.105) requires first, the evaluation of all
terms in the three equations at time levels n and n−1. On boundaries where the transports
are specified, the specified values at time level n+ 1 are inserted into equation (2.105).
Equations (2.103) and (2.104) are then used to eliminate the unknown transports at time
level n+1, from equation (2.105). The result is a discrete Helmholtz type elliptic equation
for the free surface displacement at time level n+1, having the general form

ζ
n+1−g∆t2

(
1
m

)ζ [
δ

ζ
x

(
H

my

mx

)u

δ
u
x ζ

n+1 +δ
ζ
x

(
H

mx

my

)v

δ
v
y ζ

n+1
]
−φ = 0 (2.118)

with the term φ containing all previously evaluated terms and transport boundary condi-
tions. For cells where the free surface displacement is specified, equation (2.118) is re-
placed by an equation which enforces the specified boundary condition at time level n+1.
For the rigid lid case where the free surface displacement is constant in time and space,
equation (2.118) is modified to give an equation for the unknown surface pressure ps, by
eliminating the first term, replacing gζ in the discrete elliptic operator by ps, and appropri-
ately modifying the last term. In the computer code, the system of equations correspond-
ing to equation (2.118) is solved by a reduced system conjugate gradient scheme with a
multicolor or red-black ordering of the cells (Hageman and Young, 1981). The conjugate
gradient iterations continue until the sum of the squared residuals is less than a specified
value. The free surface displacements or surface pressures are then substituted into equa-
tions (2.103)-(2.104) to determine the transports at time level n+ 1. Since the solution of
equation (2.118) is approximate, equation (2.105) may not be identically satisfied upon
substitution of the time level n+ 1 transports and free surface displacement. To ensure
that the equation (2.105) is identically satisfied in the case of a dynamic free surface, it is
solved for a revised value of the time level n+1, free surface displacement after introduc-
tion of the time level n+1 transports. For the rigid lid case, an external divergence error is
calculated and compensated for by adding appropriate volumetric source or sink terms to
equation (2.105) during the next time step.

2.5. Computational Aspects of the Three-Time Level Internal Mode Solution

The internal mode equations (2.94) and (2.95) are solved using a fractional step scheme
(Peyret and Taylor, 1983) with the first step being explicit and the second step being im-
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plicit. Figure 2.5 illustrates the location variables in the x, z plane for the x component of
the internal mode equations.

Fig. 2.5. U-centered grid in the vertical (x,z) plane.

The computational equations for the three-time level explicit step are;
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(2.119)
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(Qk+1−Qk)
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(2.120)

W = mxmyw = mw, (2.121)

where the superscript ∗∗ denotes the provisional solution, and all the terms that don’t have
a specified time level are at the centered time level n. The horizontal volume transport,
P and Q are defined by the equation (2.80), and W is the vertical volume transport. The
horizontal difference operations on the horizontal advection terms are identical to those
presented in Section 2.3, equations (2.108) to (2.110). The vertical momentum flux terms
may be represented in forms consistent with central or upwind differencing as shown in
equations (2.122) and (2.123).

(Wu)u
i, j,k =

Wi− 1
2 , j,k

+Wi+ 1
2 , j,k

2
ui, j,k +ui, j,k+1

2
(2.122)

(Wu)u
i, j,k = max

(
Wi− 1

2 , j,k
+Wi+ 1

2 , j,k

2
,0

)
un−1

i, j,k +min

(
Wi− 1

2 , j,k
+Wi+ 1

2 , j,k

2
,0

)
un−1

i, j,k+1

(2.123)

where the advected velocity is in the upwind form, equation (2.123) is evaluated at time
level n− 1 for stability. The horizontal difference operations on the buoyancy and mean
and total depths are central difference operators defined by equations (2.106) and (2.107).
The inclusion of horizontal diffusion in the source, sink terms in equations (2.119) and
(2.120) would follow from its inclusion in equations (2.103) and (2.104). The Coriolis and
curvature terms are averaged and differenced by the energy conserving scheme presented
in the Section 2.3, equations (2.111) to (2.114). The stability of the explicit fractional step

42 EFDC+ Theory Document



2. HYDRODYNAMICS

(Equations (2.119) and (2.120)) is governed by the stability of the discretization of the
horizontal and vertical advective accelerations, which will be discussed in Section 2.5, and
the discretization of the Coriolis and curvature terms. The results of the Fourier stability
analysis of the external mode scheme, with respect to the Coriolis acceleration, can be
shown to apply to the internal mode scheme as well.

The computational equations for the second step of the three-time level scheme are:
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(2.124)
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(2.125)

Using equations (2.83) and (2.84), the turbulent shear stresses are related to the hori-
zontal transports by:
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(2.127)

Equations (2.126) and (2.127) could be used to eliminate the turbulent shear stresses
from equations (2.124) and (2.125) to give a pair of K− 1 systems of equations for the
transport differences between layers, however, the resulting equations are poorly condi-
tioned. Instead, equations (2.126) and (2.127) are used to eliminate the horizontal transport
differences at time level n+ 1 from equations (2.124) and (2.125) to give a pair of K− 1
equations for the turbulent shear stresses.
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These equations are diagonally dominant and well conditioned, and can be solved
independently at each of the horizontal velocity locations. Since equations (2.128) and
(2.129) represent fully implicit, backward difference in time, schemes for one dimensional
parabolic diffusion equations, the solutions are unconditionally stable (Fletcher, 1988).
Given the solutions of the equations (2.128) and (2.129), the shear stresses, the K − 1
transport differences, Pk+1−Pk, and Qk+1−Qk, are determined from equations (2.126)
and (2.127) and combined with the continuity constraints, equations (2.92) and (2.93), to
form a pair of K equations for the horizontal transports in each cell layer. To illustrate, the
horizontal transports in the surface cell layer are determined analytically and given as

Pk = P̂+
K−1

∑
k=1

(
k

∑
j=1

∆ j

)
(Pk+1−Pk) . (2.130)

A similar expression can be derived for QK. Working down from the surface using the
K− 1 transport differences allows the remaining transports to be determined. It is noted
for later use that the bottom cell layer transports can be expressed in terms of the depth
integrated transports and the transport differences using:

P1 = P̂−
K−1

∑
k=1

(
1−

k

∑
j=1

∆ j

)
(Pk+1−Pk), (2.131)

and an identical equation for Q1.
The solution of equations (2.128) and (2.129) requires specification of bottom and sur-

face stresses at k = 0 and k = K, respectively. On the free surface, (k = K) the surface wind
stress components are specified. On the bottom fluid-solid boundary, (k = 0) the bottom
stress must be specified. The simplest approach to specifying the bottom stress components
utilizes the velocity component in the bottom cell layer and the quadratic friction relations
shown in equations (2.132) and (2.132).
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Assuming a logarithmic velocity profile between the solid bottom and the middle of the
bottom cell layer gives the bottom stress coefficient:

Cb =
κ2[

ln
(

∆1H
2z∗0

) ]2 (2.134)
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where z∗o is the dimensional bottom roughness height. Inserting equation (2.131) and a
corresponding equation for Q1 into equations (2.132) and (2.133), respectively allows the
bottom stresses at time level n+1 to be expressed in terms of the depth integrated transport
components, known from the external mode solution, and the unknown transport differ-
ences at time level n+1. However, the transport differences at time level n+1 are related to
the shear stress components by equations (2.126) and (2.127), allowing the bottom stresses
to be expressed in terms of the depth integrated transports and the internal shear stresses
by:
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(2.135)

and a similar expression for the y component. Inserting equation (2.135) and the corre-
sponding y component equation for the bottom stress components into the k = 1 pair of
equations (2.128) and (2.129) results in a nearly tri-diagonal system with a fully populated
first row. The systems of equations are still efficiently solved using a tri-diagonal equation
solver and the Sherman-Morrison formula (Press et al., 1986).

The internal mode solution is completed by the determination of the vertical velocity
using:

wk = wk−1−
∆k

mζ

[
δ

ζ
x
(
Pk− P̂

)
+δ

ζ
y
(
Qk− Q̂

)]
(2.136)

which follows from the equation (2.97). The solution of equation (2.136), where all vari-
ables are at time level n+1, proceeds from k = 1 since wo = 0. A two time level correction
step is also periodically inserted into the internal mode time integration on the same time
step as the external mode correction. The computational equations follow directly from the
three time level equations using the details of the external mode presented in Section .

2.6. Vertical Layering Options

This section summarizes the vertical coordinate options in EFDC+. It supplements the
theoretical and computational description of the basic EFDC+ hydrodynamic and transport
model components. The EFDC+ model was originally formulated with a sigma stretched
vertical coordinate. Later, more efficient vertical layering options, namely sigma-zed op-
tions have been implemented to reduce the error due to the horizontal pressure gradients
and to reduce the number of computational cells.

45 EFDC+ Theory Document



2. HYDRODYNAMICS

2.6.1 Sigma Coordinate System

A sigma coordinate system is a topographically conformal vertical coordinate system
which is widely used in three-dimensional hydrodynamic models. In this vertical coordi-
nate system, the number of vertical levels in the water column is the same everywhere in
the domain irrespective of the depth of the water column (Figure 2.6(a)). This can resolve
the water column equally well and equally efficiently in both shallow and deep regions
of a computational domain simultaneously and it is suitable for a water body with compli-
cated geometry and large changes in bottom elevation. The transformation of the governing
equations using sigma-coordinate in the vertical is described in the Section 2.1.

In the sigma coordinate formulation, the number of vertical layers is the same at all
horizontal locations in the model grid. Although this formulation is widely accepted, con-
ceptually attractive and adequate for a large range of applications, there are numerous ap-
plication classes where a traditional z or physical vertical grid is desirable, such as deep
reservoirs with rapid and large lateral bathymetric changes. There are also applications
where the ability to use a combination of sigma and physical z vertical layering in different
regions of the horizontal domain would be desirable. An example would be a deep naviga-
tion channel in an otherwise shallow estuary. The sigma stretched vertical grid formulation
may also be subject to internal pressure gradient errors (Mellor et al., 1994) providing an-
other motivation for having alternative options to the sigma formulation.

2.6.2 Sigma-Zed Approach (SGZ)

The standard sigma grid used for the transformation of the vertical coordinate intro-
duces a well-known error in the horizontal gradient terms including the concentration, ve-
locity, and pressure (Mellor et al., 1994). In general, this error is significant only in the
regions with steeply varying bathymetry. In order to overcome this weakness, two new
vertical layering approaches that are computationally efficient have been developed and
applied to the EFDC+ model (Craig et al., 2014). The vertical layering scheme has been
modified to allow the number of layers to vary over the model domain based on the water
depth. Consequently, each cell can have a different number of layers. The z coordinate
system varies for each cell face, matching the number of active layers to the adjacent cells
(face matching of layering is a fundamental difference with the GVC approach). Such a
transformation is referred to as the sigma-zed (SGZ) coordinate. The differences in the
two optional SGZ approaches relate to the sigma layer thickness computed for each cell.
Figure 2.6 shows a schematic demonstrating the layering options. Panel (a) represents a
standard sigma stretch grid with 10 layers. Panels (b) represents the specified bottom ap-
proach which allows a user specified number of layers in each horizontal cell. Figure 2.6(c)
represent SGZ options with uniform layering where the bottom of each vertical layer are
aligned in the horizontal direction. It should be noted that, in SGZ coordinate the number
of vertical layers can be very large, but the computational time is shorter in comparison
with a similarly configured sigma (SIG) coordinate model.

For SGZ transformation, the equations are still the same as the standard sigma trans-
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Fig. 2.6. An illustration of EFDC+ Layering options for a model with K = 10. (a) Standard Sigma
(SIG), (b) SGZ-Specified Bottom, and (c) SGZ-Uniform Layering.

formation, however, the number of layers at each cell differs based on a factor determined
based on the ratio between bed elevation and the minimum elevation. In addition, the
thickness of layers at each cell must satisfy

KC

∑
k=n

∆k = 1, (2.137)

in which KC is the maximum number of layers, n the index of bottom layer and ∆k the
thickness of layer k.

For the original sigma the index of the bed layer always is equal to n = 1 while in the
SGZ this value can be varied in the range 1 ≤ n ≤ K depending on the number of layers
due to the rescaling. This requirement improves the accuracy of the horizontal gradient
calculation for the variable Ci, j,k of the cell L(i, j) at layer k :

pd[Ci, j,k]x =
Ci, j,k−Ci−1, j,k

∆x
. (2.138)

When sediment transport is simulated and bed morphology is considered, the determi-
nation of the new indices of bottom layers should be implemented at every time step. This
is because currently the ratios between water depths and the maximum are changing due to
erosion or deposition compared to the previous time step. Therefore, an update of layering
for the whole domain is important and necessary for SGZ. However, the re-layering is only
an optional approach.

The other necessary modification for SGZ coordinate system is the treatment on wet/dry
in 3-D calculation of the horizontal gradient when the number of layers at cell L(i− 1, j)
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is less than that at cell L(i, j). It should be noted that this problem does not appear for SIG
coordinates, because the number of layers is the same for every cell. This means that the
SIG model requires more calculation time and is therefore one of the weak points of the
SIG coordinate system which is overcome with SGZ.

2.6.3 Verification of SGZ Approach

A modification of the vertical coordinate system algorithm in EFDC+ with SGZ trans-
formation has been successfully implemented. It has been tested for many computation
domains with different hydrodynamic regimes, such as the application to Lake Washington
(Seattle, WA, USA), which has steep bottom gradients and sharp thermoclines.

In this test, two EFDC+ options including the original sigma (SIG) and sigma-zed
(SGZ), were applied with the same model conditions. Some parameters in the model for
the two options are presented in Table 2.2.

Table 2.2. Input parameters for the Lake Washington Model With Two Different Layering Options

Options
Time
(days)

Time step
(seconds)

Number
of layers

Thermal
model

Standard sigma stretched grid (SIG) 120 5 55 Yes
Sigma-Zed grid (SGZ) 120 5 2 - 55 Yes

In order to investigate the influence of horizontal gradient terms on the vertical profiles
of temperature as well as the accuracy between SIG and SGZ models, comparisons between
the model outputs versus the data were conducted for every day during the summer 2008
simulation period. Eight representative vertical profiles, starting at the beginning of the
simulation and ending on October 15, are presented in Figure 2.7 for the SIG model and
Figure 2.8 for the SGZ model. These figures suggest that the temperature profile generated
by the SGZ model replicates the observed data better than the SIG model.

2.7. Near-Field Discharge Dilution and Mixing Zone Analysis

The calculation procedure of the jet/plume submodel is mainly based on Lee and Che-
ung (1990). The trajectory of a group of plume particles is traced in time using a Lagrangian
formulation. The plume puff gains mass as ambient fluid is entrained and mixed within it,
but once entrained, the new mass becomes an indistinguishable part of the plume puff. In
the simplest version, the plume is assumed to be essentially a cylindrical segment whose
radius grows as mass is entrained. The initial plume mass is identified as the mass issuing
form a diffuser with radius b0 :

M0 = ρ0πb2
0h0, (2.139)
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Fig. 2.7. Comparison of the vertical profile of temperature between data (red) and SIG model
(blue).

where h0 is the length of the plume mass and is chosen to be comparable to b0. For example,
h0 = r and b0 = r, where r is the radius of the diffuser.

h0 =V0∆t (2.140)

The increment in the plume mass at the time step nth is evaluated as the sum of the
plume mass increment due to the shear-induced entrainment and the forced entrainment.

∆Mn = ∆Ms +∆M f (2.141)

In equation (2.141) ∆Ms is the increase in mass due to shear entrainment, and ∆M f is
the increase in mass due to forced entrainment. A schematic of a rising plume discharged
into a water body is shown in Figure 2.9.
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Fig. 2.8. Comparison of the vertical profile of temperature between data (red) and SGZ model
(blue).

2.7.1 Shear-Induced Entrainment

The increase in mass of the plume element is due to turbulent entrainment of the ambi-
ent flow. Close to the discharge point, or in a very weak current, shear-induced entrainment
dominates. In general, however, the forced entrainment of the cross flow dominates, except
very close to the source. In the model, assuming the total entrainment is a function of the
horizontal currents and a shearing action of the plume relative to the currents, the increase
in mass due to shear entrainment, ∆Ms, is written as

∆Ms = ρa2πbnhnE |Vn−uacosφncosθn |∆t. (2.142)

In which the subscript n denotes the value of plume element at nth step of calculation,
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Fig. 2.9. Near field Jet Plume mixing.

the subscript a denotes the local ambient value, E is the entrainment coefficient which is
dependent on the local densimetric Froude number F1 and jet orientation

E =
√

2
0.057−0.554 sinθn

F2
1

1+5 uacosφn cosθn
|Vn−uacosφn cosθn |

, (2.143)

where F1 is the local densimetric Froude number

F1 = α
|Vn−uacosφn cosθn |√

g∆ρn
ρa

bn

, (2.144)

and α is a proportionality constant.

2.7.2 Forced Entrainment

Experimental observations by Chu and Goldberg (1984) and Stuart Churchill (1975)
have shown that the transfer of horizontal momentum is complete beyond a few jet diam-
eters. We assume that all the ambient flow on the downdrift side of the plume is entrained
into the plume element. This forced entrainment of the ambient flow into an arbitrarily
inclined plume element can be formulated as

∆M f = ρaua

[
2b∆s

√
1− cos2 φ cos2 θ +πb∆bcosφ cosθ +

1
2

πb2
∆(cosφ cosθ)

]
(2.145)
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In the equation 2.145, the first term represents the forced entrainment due to the pro-
jected plume area normal to the cross flow; the second term is a correction due to the growth
of plume radius; and the third term is a correction fue to the curvature of the trajectory.

An initial estimate of ∆M f can be obtained as

∆M f = ρauahnbn

[
2
√(

sin2
φ + sin2

θ − sin2
φ sin2

θ
)

n

+ π

(
∆b
∆s

cosφ cosθ

)
n
+

πbn

2
(cosφ cosθ)n− (cosφ cosθ)n−1

∆sn

]
∆t

(2.146)

2.7.3 Model Implementation

At the nth step, consider a plume element located at (xn, yn, zn) with the velocity
(un, vn, wn) and its magnitude Vn. The jet axis makes an angle of φn with the horizon-
tal plane, and θn is the angle between the x-axis and the projection of the jet axis on the
horizontal plane. The half-width or radius of the plume element is bn; hn is the thickness,
defined as proportional to the magnitude of the local jet velocity, hn = Vn∆t. The mass of
the plume element is then given by

Mn = ρnπb2
nhn (2.147)

Given the increase in mass due to turbulent entrainment, ∆Mn, the plume element char-
acteristics at the next step are obtained by applying conservation of mass, horizontal and
vertical momentum, energy, and tracer mass to the discrete element. For completeness,
the self-explanatory equations of the generalized Lagrangian model, essentially similar to
its original two-dimensional counterpart (Winiarski and Frick, 1976) are summarized as
follows:

Mass conservation

Mn+1 = Mn +∆Mn (2.148)

Mn+1 = ρn+1πb2
n+1hn+1 (2.149)

The concentration of the tracer, salinity, temperature and water density

Cn+1 =
MnCn +∆MnCa

Mn+1
(2.150)

Sn+1 =
MnSn +∆MnSa

Mn+1
(2.151)
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Tn+1 =
MnTn +∆MnTa

Mn+1
(2.152)

ρn+1 = ρ (Sn+1,Tn+1) (2.153)

The horizontal momentum

un+1 =
Mnun +∆Mnua

Mn+1
(2.154)

vn+1 =
Mnvn

Mn+1
(2.155)

The vertical momentum

wn+1 =
Mnwn +∆Mn+1

(
∆ρ

ρ

)
n+1

g∆t

Mn+1
(2.156)

(Mw)n+1 = (Mw)n +(∆ρV )n+1g∆t (2.157)

where

Vn+1 =
√

u2
n+1 + v2

n+1 +w2
n+1 (2.158)

Un+1 =
√

u2
n+1 + v2

n+1 (2.159)

The new thickness and radius of the plume element

hn+1 =
Vn+1

Vn
hn (2.160)

bn+1 =

√
Mn+1

πρn+1hn+1
(2.161)

The jet orientation

φn+1 = arctan
(

wn+1

Un+1

)
(2.162)
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θn+1 = arctan
(

vn+1

un+1

)
(2.163)

The new location of the plume element

xn+1 = xn +un+1∆t (2.164)

yn+1 = yn + vn+1∆t (2.165)

zn+1 = zn +wn+1∆t (2.166)

The distance along the trajectory

∆sn+1 =Vn+1∆t (2.167)

The time step ∆t can be fixed or variable; its is chosen via a “prediction-correction”
procedure to attain a prescribed fractional change in mass (typically of the order of 1%) at
each step.
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Chapter 3

TRANSPORT MODEL FOR
CONSERVATIVE CONSTITUENTS

3.1. Introduction

This section summarizes the theoretical and computational aspects of the transport for-
mulations for passive scalar transport used in EFDC+. Theoretical and computational as-
pects for the EFDC+ generic transport model components are presented in Hamrick (1992).

3.2. Basic Equation of Advection-Diffusion Transport

The generic transport equation for a dissolved or suspended material is shown in equa-
tion (3.1):

∂

∂ t
(mxmyHC)+

∂

∂x
(myHuC)+

∂

∂y
(mxHvC)+

∂

∂ z
(mxmywC)− ∂

∂ z
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=
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∂x

(
my

mx
HAH

dC
dx

)
+

∂

∂y

(
mx

my
HAH

dC
dy

)
+

∂

∂ z

(
mxmy

H
Ab

dC
dz

)
+SC (3.1)

where

x, y are the orthogonal curvilinear coordinates in the horizontal direction (m)

z is the sigma coordinate (dimensionless)

t is time (s)

mx, my are the square roots of the diagonal components of the metric tensor (m)

m is the Jacobian m = mxmy (m2)

C is the concentration or intensity of transport constituent (g/m3 for concentration
of dissolved/suspended material, ◦C for temperature, ppt for salinity)
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H is the total water depth (m)

u, v are the horizontal velocity components in the curvilinear coordinates (m/s)

w is the vertical velocity component (m/s)

AH is the horizontal turbulent eddy diffusivity (m2/s)

Ab is the vertical turbulent eddy diffusivity (m2/s)

wsc is a positive settling velocity when C represents a suspended material

Sc is the source/sink term for the constituent that includes subgrid scale horizontal
diffusion and thermal sources and sinks.

3.3. Numerical Solution for Transport Equations

In this section, solutions techniques for the transport equations for salinity, tempera-
ture, turbulence intensity, and turbulence length scale are presented. Stability and accuracy
aspects of the advection schemes common to the transport equations and the external and
internal horizontal momentum equations are also discussed. The salinity transport equation
(3.2) is used as a generic example and the location of variables is shown in Figure 3.1.

Fig. 3.1. S-centered grid in the vertical (x,z)-plane

The salinity transport equation (3.2) is integrated over a cell layer to give:

∂

∂ t
(mHCk)+

∂

∂x
(PkCk)+

∂

∂y
(QkCk)+

(WC)k− (WC)k−1

dk
−

m
dk

[(
Ab

H
dC
dz

)
k
−
(

Ab

H
dC
dz

)
k−1

]
− (SC)k = 0 (3.2)

56 EFDC+ Theory Document



3. TRANSPORT MODEL FOR CONSERVATIVE CONSTITUENTS

where Pk, Qk, and Wk are defined by equations (2.80) and (2.121). The source, sink, ad-
vection, and vertical diffusion portions of equation (3.2) are treated in separate fractional
steps, as was done for the internal mode momentum equations in Section 2.4.

Fig. 3.2. Sigma coordinate and variable center (Ji, 2008).

The three time level fractional step sequence is given by:

C∗k =Cn−1
k +

2dt
mHn−1 (SC)

n−1
k (3.3)

(mH)n+1C∗∗k = (mH)n−1C∗k − 2dt
[

dd
x (PkCk)+dd

y (QkCk)+
(WC)k− (WC)k−1

dk

]
(3.4)

(HCk)
n+1−2dt

{[(
Ab

H

)n

k

(Ck+1−Ck)
n+1

dkdk+1,k

]
−

[(
Ab

H

)n

k−1

(Ck−Ck−1)
n+1

dkdk,k−1

]}
=Hn+1C∗∗k

(3.5)

The source, sink step (see equation (3.3)) is explicit and involves no changes in cell
volumes. When the source, sink term represents horizontal turbulent diffusion, it is evalu-
ated at time level n−1, for stability (Fletcher, 1988). The advection step, equation (3.4), is
explicit and involves changes in cell volumes. The vertical diffusion step, equation (3.5),
which involves no changes in cell volumes, is fully implicit and unconditionally stable
(Fletcher, 1988).

Rearranging equation (3.5), the vertical diffusion step, gives:
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− 2dt
dkdk,k−1

(
Ab

H

)n

k−1
Cn+1

k−1 +

[
2dt

dkdk,k−1

(
Ab

H

)n

k−1
+Hn+1 +

2dt
dkdk+1,k

(
Ab

H

)n

k

]
Cn+1

k −

2dt
dkdk+1,k

(
Ab

H

)n

k
Cn+1

k+1 = Hn+1C∗∗k (3.6)

For salinity, temperature, and suspended sediment concentration, the generic variable
C is defined vertically at cell layer centers, and the diffusivity is defined at cell layer inter-
faces. Equation (3.6) then represents a system of K equations and the boundary conditions
are generally of the specified flux type. Specified surface and bottom flux boundary con-
ditions are most conveniently incorporated in the surface and bottom cell layer source and
sink terms allowing Ab at the bottom boundary, k = 0, and the surface boundary, k = k+1,
to be set to zero making equation (3.6) tri-diagonal. For turbulence intensity and turbu-
lence length scale, equations (2.23) and (2.24), the generic variable C is defined vertically
at cell layer interfaces and the diffusivity is defined at cell layer centers. Equation (3.6)
then represents a system of K−1 equations for the variables at internal interfaces with the
variable values at the free surface and bottom being provided as boundary conditions. For
the turbulence intensity and length scale, the boundary conditions are:

q2
0 = B2/3

1

√
t2
bx + t2

by, l0 = 0, atz= 0 (3.7)

q2
K = B2/3

1

√
t2
sx + t2

sy, lK = 0, atz= 1 (3.8)

where τb and τs are the bottom and surface stress vectors, respectively. Insertion of these
boundary conditions results in equation (3.6) representing tri-diagonal systems of K− 1
equations for the turbulence intensity and length scale.

Without loss of generality, the notation used in analyzing the three time level advection
step, equation (3.4), is simplified by replacing the double and single asterisk intermediate
time level indicators by n+1 and n−1, respectively to give:

(mHCk)
n+1 = (mHCk)

n−1−2
dt
dx

[
(PC)i+ 1

2 , j,k
− (PC)i− 1

2 , j,k

]
−

2
dt
dy

[
(QC)i, j+ 1

2 ,k
− (QC)i, j− 1

2 ,k

]
−2

dt
dk

[
(WC)k− (WC)k−1

]
(3.9)

where the horizontal central difference operators have been expanded about the cell volume
centroid (x,y), according to equations (2.106) and (2.107). The cell face fluxes can be
represented consistent with centered in time and space differencing as was illustrated by
equations (2.108), (2.109) and (2.122) or forward in time and backward or upwind in space
as was illustrated by equations (2.110) and (2.123) for the x momentum fluxes. For the
centered in time and space form, equation (3.9) becomes:
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(mHCk)
n+1 = (mHCk)

n−1−
dt
dx

[
P̃i+ 1

2 , j,k

(
Ci+1, j,k +Ci, j,k

)
− P̃i− 1

2 , j,k

(
Ci, j,k +Ci−1, j,k

)]
−

dt
dy

[
Q̃i, j+ 1

2 ,k

(
Ci, j+1,k +Ci, j,k

)
− Q̃i, j− 1

2 ,k

(
Ci, j,k +Ci, j−1,k

)]
−

dt
dk

[
W̃i, j,k

(
Ci, j,k+1 +Ci, j,k

)
−W̃i, j,k−1

(
Ci, j,k +Ci, j,k−1

)]
(3.10)

The transports in equation (3.10) are evaluated at the centered time level when used in
the external and internal momentum equations, and are averaged to the centered time level
using

P̃k =
1
2
(
Pn+1

k +Pn−1
k

)
(3.11)

when used in the transport equations for scalar variables.
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Chapter 4

DYE MODULE

The dye constituent in EFDC+ represents a dilute substance in the water column that
does not impact the hydrodynamics (i.e. no impact on thermal physical properties such
as density and viscosity) or any other water column process (e.g. light extinction). This
constituent can be used as a tracer, with or without decay, or it can be used to compute the
age of water in days.

The dye is transported in the water column as determined by the equation (4.1).

∂

∂ t
(mxmyHC)+

∂

∂x
(myHuC)+

∂

∂y
(mxHvC)+

∂

∂ z
(mxmywC)− ∂

∂ z
(mxmywscC)

=
∂

∂x

(
my

mx
HAH

dC
dx

)
+

∂

∂y

(
mx

my
HAH

dC
dy

)
+

∂

∂ z

(
mxmy

H
Ab

dC
dz

)
+

dC
dt

+S
C

(4.1)

4.1. Decay

The dye constituent can be configured to decay with a zeroth or first order approach, as
shown in the equations 4.2 and 4.3, respectively.

dC
dt

=−K (4.2)

dC
dt

=−KC (4.3)

In equations 4.2 and 4.3, C is the dye concentration in g/m3, K is the first order decay rate
in 1/s and t is time is seconds.

Additionally, dye decay rate can be a function of water temperature using the equation
(4.4).

dC
dt

=−Kθ
(T−Tre f )C (4.4)

60 EFDC+ Theory Document



4. DYE MODULE

4.2. Age of Water

As mentioned, the dye constituent may be used to calculate the age of water (in days).
With this option, a zero-order kinetic rate approach is used:

dC
dt

=−K (4.5)

where C is “age” in days, t is time in days and K is in units of 1/day. By averaging cell
ages over all or parts of the model domain, residence times can be computed. If the model
is run sufficiently long enough to achieve a dynamic steady state, the hydraulic residence
time can be computed.
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Chapter 5

TEMPERATURE AND HEAT
TRANSFER MODULE

5.1. Introduction

This chapter presents an overview of heat transfer implemented in EFDC+, including
the energy equation and heat transfer options. Additional details are given regarding the
sub-models for water column temperature, surface and bed heat exchanges, thermal power
plant cooling water, and ice formation and melt.

5.2. Basic Equation of Heat Transfer

The basic equation for heat transfer in curvilinear and sigma coordinates is given as
follows (Ji, 2008):

∂

∂ t
(mHT )+

∂

∂x
(PT )+

∂

∂y
(QT )+

∂

∂ z
(mwT ) =

∂

∂ z

(
m
H

Ab
∂T
∂ z

)
+

∂ I
∂ z

+ST (5.1)

where

x,y are the orthogonal curvilinear coordinates in the horizontal direction (m)

z is the sigma coordinate (dimensionless)

t is time (s)

mx,my are the square roots of the diagonal components of the metric tensor (m)

m = mxmy is the Jacobian (m2)

T is temperature (◦C)

H is the total water depth (m)
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P,Q are the mass flux components (m2/s) in the x and y directions, respectively, which
were defined in (2.9)

u,v are the horizontal velocity components in the curvilinear coordinates (m/s)

w is the vertical velocity component (m/s)

Ab is the vertical turbulent eddy viscosity (m2/s)]

I is the short wave solar radiation (M/m2)

ST is the source/sink term for heat exchanges (J/s)

To solve the equation (5.1), the hydrodynamic transport (u, v, w), and the turbulent
mixing Ab, are provided by the hydrodynamic module in EFDC+ model. For the short
wave solar radiation, the depth distribution is exponential and can be expressed as Beer’s
Law:

I (D) = Ise(−KeD) (5.2)

where

I(D) is the solar radiation at depth D below the surface (M/m2)

IS is the solar radiation at the surface (D = 0) (M/m2)

D =H(1− z) is the depth below water surface (m)

Ke is the light extinction coefficient (1/m)

Solar radiation that penetrates the surface of water is absorbed by water. The absorption
heats the water column and radiation penetration depends on the light extinction coefficient
(Ke). The light extinction coefficient (also referred to as the light attenuation coefficient)
is the measure for the reduction (absorption) of light intensity within a water column. The
solar radiation at the surface Is is a function of location, time of the year, time of day,
meteorological conditions, and other insignificant factors.

5.3. Surface Heat Exchange

5.3.1 Equilibrium Temperature

A computed equilibrium temperature can be used for the surface heat exchange in
EFDC+. The approach used here is based on the equilibrium temperature computation ap-
proach in the CE-QUAL-W2 (Wells and Cole, 2000). Equilibrium temperature submodel
is fully linked with ice submodel that incorporates ice growth and ice melt processes.

Because some of the terms in the term-by-term heat balance equation are surface tem-
perature dependent and others are measurable or computable input variables, the most di-
rect route to simplify computation is to define an equilibrium temperature, Te, as the tem-
perature at which the net rate of surface heat exchange is zero.
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Linearization of the term-by-term heat balance along with the definition of equilibrium
temperature allows for expression of the net rate of surface heat exchange, Hn, as:

Haw =−Kaw (Tw − Te ) (5.3)

where

Haw is the rate of surface heat exchange (M/m2)

Kaw is the coefficient of surface heat exchange (W/m2/◦C)

Tw is the water surface temperature (◦C)

Te is the equilibrium temperature (◦C)

Seven separate heat exchange processes are summarized in the coefficient of surface
heat exchange and equilibrium temperature. The definition of the coefficient of surface
heat exchange can be shown to be the first term of a Taylor series expansion by considering
the above equation as:

Haw =
dKaw

dTs
(Ts − Te ) (5.4)

where the derivative of Haw with respect to surface temperature is evaluated from equation
(5.3) to give Kaw, the coefficient of surface heat exchange. All approximations of the
individual surface heat exchange terms enter into the evaluation of the coefficient of surface
heat exchange and the equilibrium temperature.

5.3.2 Full Heat Balance

At the water surface (z = 1), the boundary condition for the temperature transport equa-
tion (5.1) is:

−
ρcpAb

H
∂T
∂ z

= HL +HE +HC (5.5)

where

ρ is the water density (kg/m3)

cp is the water specific heat

Ab is the vertical turbulent mass mixing coefficient (m2/s)

H is the water depth (m)

HL is the surface heat exchange due to long wave back radiation (M/m2)

HE is the surface heat exchange due to evaporation/condensation (M/m2)

HC is the surface heat exchange flux due to convection (M/m2)
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Based on the approach proposed by ? and Hamrick (1992) the following is applied to
the temperature boundary condition at water surface:

HL = εσT 4
s (0.39−0.05

√
ea)(1+BcC)+4εσT 3

s (Ts−Ta) (5.6)

HE = ceρaLEWs (es− ea)
0.622

Pa
(5.7)

HC = chρacpaWs (Ts−Ta) (5.8)

where

ε is the emissivity of the waterbody (ε = 0.97)

σ is the Stefan–Boltzmann constant (σ = 5.67×10−8 W/m2/K4)

ea is the actual vapor pressure (mb)

C is the cloud fraction (C = 0 : cloudless, C = 1 : full cloud coverage)

Bc is an empirical constant (Bc = 0.8)

Ts is the water surface temperature (◦C)

Ta is the air temperature (◦C)

c4,ch are the turbulent exchange coefficients (ce = 1.1×10−3)]

ρa is the atmospheric density (ρa = 1.2 kg/m3)

cpa is the specific heat of air (cpa = 1005 J/kg/K)

LE is the latent heat of evaporation (LE = 2.501×106 J/kg)

Ws is the wind speed (m/s)

es is the saturation vapor pressure at surface water temperature (mb)

Pa is the atmospheric pressure (mb)

5.3.3 Solar Radiation

The light extinction coefficient (also called light attenuation coefficient) is the measure
for the reduction (absorption) of light intensity within a water column. The light field in
the water column is governed by:

∂ I
∂ z∗

=−KessI (5.9)

where

I is the short wave solar radiation or light intensity (M/m2)

Kess is the light extinction coefficient (1/m)
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z∗ is the depth below the water surface (m).

Integration of equation (5.9) gives:

I = Iwsexp
(
−
∫ z∗

0
Kessdz∗

)
(5.10)

The solar radiation at the surface I0 is a function of location, time of the year, time of
day, meteorological conditions, and other insignificant factors. The light intensity at the
water surface Iws, is given by:

Isw = I0S f min
{

exp [−Ke,me (Hrps−H)] ,1
}

min{exp [−Ke,iceHice],1} (5.11)

where

I0 is the solar radiation at the Earth’s surface (M/m2)

S f is the tree canopy and/or terrain shading factor (dimensionless)

Hice is the ice thickness (m)

Ke,ice is the light extinction coefficient for ice cover (1/m)

Ke,me is the light extinction coefficient for emergent shoots (1/m)

Hrps is the rooted plant shoot height (m), and

H is the water column depth (m)

In EFDC+, depending on which heat exchange option has been selected, light extinction
is treated differently. The different heat exhcange options are listed below.

• Term by Term Heat Exchange: EFDC+ computes the net extinction coefficient for
each cell and layer at every time step.

• Term by Term Heat Exchange (Legacy): The extinction coefficient is constant
spatially and temporally. This is consistent with legacy versions of EFDC+.

• Equilibrium Temperature: EFDC+ computes the net extinction coefficient for each
cell and layer at every time step.

5.3.3.1 Term by Term Heat Exchange

EFDC+ computes the net extinction coefficient for each cell and layer at every time
step using equation (5.10).
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5.3.3.2 Term by Term Heat Exchange (Legacy)

The extinction coefficient is constant spatially and temporally. This is consistent with
previous implementations of EFDC+. To solve the equation (5.1), the hydrodynamic trans-
port (u, v, w), and the turbulent mixing Ab, are provided by the EFDC+ model. The depth
distribution of the solar radiation heating is an exponential function and is expressed as:

I = rIswexp
[
−β f H (1− z)

]
+(1− r) Iswexp [−βsH (1− z)] (5.12)

where

I is the solar radiation at water depth z (M/m2)

Isw is the incident solar radiation at water surface (z = 1) (M/m2)

β f is the fast scale attenuation coefficients (1/m)

βs is the slow scale attenuation coefficients (1/m)

r is the distribution fraction between 0 and 1

5.3.3.3 Equilibrium Temperature

The extinction coefficient can vary spatially and temporally as described in the Full
Heat Exchange option. If the Equilibrium Temperature heat exchange option is selected,
the light extinction is handled the same as with the Full Heat Balance option with the
exception of the addition of a constant fraction of the solar radiation is always adsorbed
in the top layer, regardless of how thick it is or what the extinction coefficient is. This is
described by the Beer’s law with the additional term β :

Hs(z) = (1−β )Hsexp(−ηz) (5.13)

where

Hs(z) is the short wave radiation at depth z (M/m2)

β is the fraction absorbed at the water surface (dimensionless)

Ke is the extinction coefficient (1/m)

Hs is the short wave radiation reaching the water surface (M/m2)

5.3.4 Light Extinction Factors

The standard EFDC+ term by term full heat balance surface heat exchange processes
are the same as the full heat balance (legacy) option. The major difference between these
two options is that the standard EFDC+ full heat balance uses variable light extinction
factors. Total light extinction in the model is given by:

67 EFDC+ Theory Document



5. TEMPERATURE AND HEAT TRANSFER MODULE

Ke,SS = Ke,b+Ke,T SST SS+Ke,POCPOC+Ke,DOCDOC+Ke,Chl ∑Chl+Ke,RPSRPS (5.14)

This equation also applies for the equilibrium temperature (CE-QUAL-W2 method)
option. When using the EFDC+ full heat balance or equilibrium temperature option, the
heat module and the WQ module use the same light extinction factor (Ke). For the full heat
balance (legacy) option they are decoupled.

If the legacy version of the surface heat exchange option is used, then light extinction
is constant in time and space. However, the user must specify Ke,( f ast), Ke,(slow), and
FACT ( f ast). The latter term is the fraction of the SR that is attenuated “fast”, i.e. using
Ke,( f ast),
where

Ke,SS is the total light extinction coefficient (1/m)

Ke,T SS is the light extinction coefficient for total inorganic suspended solid (1/m per
g/m3)

Ke,b is the background light extinction (1/m)

Ke,T SS is the light extinction coefficient for total inorganic suspended solid (1/m per
g/m3)

T SS is the inorganic suspended solid concentration (g/m3) provided from the sediment
transport module

POC is the total Particulate Organic Carbon concentration (Labile and Refractory)
(g/m3) provided from the water quality module

Ke,POC is the light extinction factor as a function of POC concentrations (1/m per g/m3)

DOC is the Dissolved Organic Carbon concentration (Labile and Refractory) (g/m3)
provided from the water quality module

Ke,DOC is the light extinction factor as a function of DOC concentrations (1/m per g/m3)
CChlRPE is the carbon-to-chlorophyll ratio for epiphytes (g C per mg Chl)

Ke,Ckl is the light extinction coefficient for algae chlorophyll (1/m per mg Chl per m2)

Bm is the concentration of algae group m (g C per ml)

CChlm is the carbon-to-chlorophyll ratio in algal group m (g C per mg Chl)

Ke,RPS is the light extinction coefficient for rooted plant shoots (1/m per gm C per m2)

RPS is the concentration of plant shoots (g C per m2)

If only hydrodynamics and temperature is simulated in the EFDC+ model, then back-
ground light extinction coefficient will be used. If hydrodynamics, temperature and T SS
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is simulated, then the total light extinction coefficient is a function of background extinc-
tion coefficient and light extinction coefficient due to T SS. If a full water quality model is
simulated with T SS, then the total light extinction coefficient is the function of background
extinction, T SS, POC, DOC and Chl−a.

Full heat balance with variable light extinction option is fully coupled with ice sub-
model and accounts for the ice melt and ice growth. Finally, the surface heat exchange
coefficients for evaporative and conductive exchange can be spatially variable.

5.4. Bed Heat Exchange

Sediment-water interface heat exchange with water is generally small compared to sur-
face heat exchange and is frequently neglected. However, including sediment bed heat
exchange can improve the simulation of temperature in deep lakes and reservoirs. The
heat exchange between the sediment bed and the bottom layer of the water column can be
described as

Hb =−
(
Kb,vU +Kb,c

)
(Tw−Tb) (5.15)

U =
√

u2
1 + v2

1 (5.16)

where

Hb is the sediment bed-water heat exchange (M/m2)

Kb,v is the convective heat exchange coefficient (W − s/m2−◦C)

Kb,c is the conductive heat exchange coefficient (W/m2−◦C)

u1 is the u component water velocity in layer 1 (m/s)

v1 is the v component water velocity in layer 1 (m/s)

Tw is the water temperature in layer 1 (◦C)

Tb is the sediment bed temperature (◦C)

Typical applications have used a value of 0.3 W/m2−◦C for Kb,c that is approximately
two orders of magnitude smaller than the surface heat exchange coefficient. Kb,c is often not
used (i.e. equal to zero) but can be in the range of 0 to 10. Average yearly air temperature
is a good initial estimate of Tb.

Optionally, the bed temperature (Tb) can change with time due to the heat exchange.

δ (DbTb)

δ t
=−

(
Kb,vU +Kb,c

)
(Tb−Tw) (5.17)

where DB is the sediment bed-thermal thickness (m). Selection of the thermal thickness is
subject to initial approximation and subsequent calibration. The larger the thermal thick-
ness is, the slower the bed temperature will change.

69 EFDC+ Theory Document



5. TEMPERATURE AND HEAT TRANSFER MODULE

5.5. Ice Formation and Melt

A robust ice sub-model has been implemented in EFDC+ which is based on the CE-
QUAL-W2 (Wells and Cole, 2000) ice module. With this model:

1. Ice formation and melt is simulated by EFDC+ using a coupled heat approach.

2. Ice dynamics (i.e. movement of ice block/chunks) have not yet been implemented.

5.5.1 Heat Balance

The heat balance for the water-to-ice air system is given by:

ρiL f
dh
dt

= hai (Ti−Te)−hwi (Tw−Tm) (5.18)

where

ρi is the density of ice (kg/m3)

L f is the latent heat of fusion of ice (J/kg)

dh/dt is the change in ice thickness (h) with time (t) (m/s)

hai is the coefficient of ice-to-air heat exchange (W/m2/◦C)

Hwi is the coefficient of water-to-ice heat exchange through the melt layer (W/m2/◦C)

TI is the ice temperature (◦C)

Tei is the equilibrium temperature of ice to air heat exchange (◦C)

Tw is the water temperature below ice (◦C)

Tm is the melt temperature (◦C)

Formation of ice requires lowering the surface water temperature to the freezing point
by normal surface heat exchange processes. With further heat removal, ice begins to form
on the water surface. This is indicated by a negative water surface temperature. The nega-
tive water surface temperature is then converted to equivalent ice thickness and equivalent
heat is added to the heat source and sink term for water. The thickness of ice formation is
calculated as

θ0 =−
Twnρwcpwh

ρiL f
(5.19)

where

θ0 is the thickness of initial ice formation during a time step (m)

Twn is the local temporary negative water temperature (◦C)
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h is the layer thickness (m)

ρw is the density of water (kg/m3), cpw is the specific heat of water (J/kg/◦C)

ρi is the density of ice (kg/m3)

L f is the latent heat of fusion (J/kg)

5.5.2 Ice Surface Temperature

The ice surface temperature is given by the equations:

T n
s

θ n−1

Ki
[Hn

sn +Hn
an−Hbr (T n

s )−Hc (T n
s )] (5.20)

Hsn +Han−Hbr−He−Hc +qi = ρiL f
dθai

dt
, for Ts = 0◦C (5.21)

qi = Ki
Tf −Ts(t)

θ(t)
(5.22)

where

Ki is the thermal conductivity of ice (W/m/◦C)

Tf is the freezing point temperature (◦C)

n is the time level

qi is the heat flux through ice (M/m2)

Hn is the net rate of heat exchange across the water surface (M/m2)

Hs is the incident short wave solar radiation (M/m2)

Ha is the incident long wave radiation (M/m2),

Hsr is the reflected short wave solar radiation (M/m2)

Har is the reflected long wave radiation (M/m2)

Hbr is the back radiation from the water surface (M/m2)

He is the evaporative heat loss (M/m2)

Hc is the heat conduction (M/m2)
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5.5.3 Freezing Temperature

The freezing temperature relationship is described as below.

Tf =

{
−0.0545T DS , T DS < 35 ppt
−0.3146−0.0417T DS−0.000166T DS2 , T DS > 35 ppt

(5.23)

where

Tf is the freezing point temperature (◦C)

T DS is the total dissolved solids (ppt)

5.5.4 Ice Melt at Air/Water Interface

The ice melt at the air/water interface is described by the equation below:

rhoicpi
Ts(t)

2
θ(t) = ρiL f ∆θai (5.24)

where

cpi is the specific heat of ice (J/kg/◦C)

θai is the ice melt at the air-ice interface (1/m)

5.5.5 Ice Growth/Melt at Bottom of Ice

The ice growth/melt at the bottom of the ice is described by the equation below:

qi−qiw = ρiL f
dθiw

dt
(5.25)

where

qi is the heat flux through the ice (M/m2)

qiw is the heat flux at the ice/water interface (M/m2)

θiw is the ice growth/melt at the ice-water interface

∆θ
n
iw =

1
ρiL f

[
Ki

Tf −T n
s

θ n−1 −hwi
(
T n

w −Tf
)]

(5.26)
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5.5.6 Solar Radiation at Bottom of Ice

Solar radiation at the bottom of the ice is given by the equation below:

Hps = Hs (1−αi)(1−βi)exp [−γiθ(t)] (5.27)

where

Hps is the solar radiation absorbed by water under ice cover (M/m2)

Hs is the incident solar radiation (M/m2)

αi is the ice albedo

βi is the fraction of the incoming solar radiation absorbed in the ice surface

γi is the ice extinction coefficient (1/m)

5.6. Thermal Power Plant Cooling Water

EFDC+ has features specifically designed for thermal simulation of a power plant’s
cooling systems. In EFDC+, the cooling water withdrawal from a nearby river or lake and
discharge from the plant are represented by the withdrawal and return boundaries. The user
can add them by specifying the flow rate Q at the withdrawal and return cells (Hamrick and
Mills, 2000).

Heat energy added to or removed from a receiving waterbody can be estimated using:

HT = Qcρcp∆T (5.28)

where

HWR is the rate of heat energy exchange due to temperature rise/fall (J/s)

QC is the withdrawal flow rate (m2/s)

ρ is the water density (kg/m3)

cp is the specific heat of water (cp = 2400J/kg/◦C)

∆T is the temperature difference between the discharged water and the receiving water
(◦C)

So, for any industrial process that uses once-through cooling water we can define the
following:

Qcool is the process water flow rate that is being pumped from the water body. The sign
convention is positive for a standard withdrawal. The thermal sinks and sources HT are
specified in the transport equation for heat:

Hintake =−QcoolρcpT1 (5.29)
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Hdischarge = Qcoolρcp (T1 +∆T ) (5.30)

where

Hintake is the heat removed from the withdrawal cell or intake

Hdischarge is the heat added back to the water body at the power plant discharge location

T1 is the ambient intake temperature (◦C)

∆T is the temperature rise of a power plant

5.7. Thermal Power Plant Forced Evaporation

The Forced Evaporation (FE) Analysis capability has been developed to quantify in-
creased evaporation induced by increased water temperatures due to releases from thermo-
electric power plants. These power plants withdraw cooling waters, which once run through
the plant and are returned to rivers or lakes at a higher temperature than the ambient water
temperature. This higher temperature water causes additional evaporation (forced evapora-
tion) from the waterbody. This additional evaporation is counted as water consumption by
regulators as it is no longer available to downstream users.

Evaporation is dependent on wind speed, atmospheric humidity, and water temperature.
There are a number of methods to compute FE using different wind functions as listed in
Table 5.1. Using these various evaporation methods, the model is first run with the power
plant, and then run again without the power plant. EE then subtracts the output from two
models and displays the difference which is the consumption of water from the power
plant. Once temperature is activated and the correct Surface Heat Exchange option has been
selected, the user can choose which evaporation approach is desired. Even if evaporative
losses are not a major concern, the evaporative mass fluxes should normally be activated
for most models.

Heat flux due to evaporation is always included for the Full Heat and the Equilibrium
Temperature (W2) options.

EFDC+/EFDC Explorer Forced Evaporation (FE) toolset results have been compared
to the Electric Power Research Institute’s (EPRI) FE estimates. EPRI’s once through cool-
ing FE analysis for river discharges is based on a USGS report on water consumption by
thermoelectric power plants (Diehl et al., 2013; EPRI, 2014).
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Table 5.1. List of Evaporation Calculation Methods

IEAVAP Evaporation Approach General Usage

0 Do Not Include Evaporation

1 Use Evaporation from ASER Measured or Externally Estimated

2 EFDC+ Original

3 Ward (1980) Cooling Lake

4 Harbeck Jr (1964) Cooling Lake

5 Brady et al. (1969) Cooling Pond

6 Anderson et al. (1954) Large Lake

7 Webster and Sherman (1995) Lakes

8 Fulford and Sturm (1984) Rivers

9 Gulliver and Stefan (1984) Streams

10 Edinger et al. (1974) Lakes/Rivers

11 Ryan et al. (1974) Lakes/Rivers
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Chapter 6

SEDIMENT TRANSPORT MODULE

6.1. Introduction

This chapter presents the transport equations of suspended sediment that are part of
EFDC+. This includes the basic theory for the two transport options available in EFDC+.
The two sediment transport options available are:

1. The “Original” sediment transport model that is based on the Hamrick’s work (Tech
et al., 2007).

2. The Ziegler, Lick, and Jones (SEDZLJ) sediment transport model that is based on
the SEDiment dynamics work (Jones and Lick, 2000; Ziegler and Lick, 1988, 1986).

6.2. Governing Equations for Suspended Sediment Transport

6.2.1 Suspended Sediment Transport

The water column equation for suspended sediment transport is derived from the
generic transport equation (3.1) for a dissolved or suspended material. For the EFDC+
implementation, the physical horizontal diffusion terms in equation (3.1) are omitted due
to small inherent numerical diffusion encountered. This yields the following from of the
suspended sediment transport equation:

∂

∂ t

(
mHC j

)
+

∂

∂x

(
PC j

)
+

∂

∂y

(
QC j

)
+

∂

∂ z

(
mwC j

)
− ∂

∂ z

(
mws, jC j

)
=

∂

∂ z

(
m

Ab

H
∂

∂ z
C j

)
+SE

s, j +SI
s, j (6.1)

where,

C j represents the concentration of the jth sediment class,
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SE
s, j is the external source-sink term, and

SI
s, j is the internal source-sink term.

The source term has been split into two terms so that the external source-sink term
could include point and nonpoint source loads. Whereas the internal source-sink term can
now include reactive decay of organic sediments or the exchange of mass between sediment
classes. The mass exchange would occur if floc formation and destruction are simulated.

The boundary conditions for the equation (6.1) in the vertical direction are as follows:

− Ab

H
∂

∂ z
C j−ws, jC j = J jo at z = 0 (6.2)

− Ab

H
∂

∂ z
C j−ws, jC j = 0 at z = 1 (6.3)

where, J jo is the net water column-bed exchange flux defined as positive into the water
column.

6.2.2 Numerical Solution

The general procedure follows that for the salinity transport equation, which uses a high
order upwind difference discretization scheme for the advective terms, described in Ham-
rick (1992). The numerical solution of equation (6.1) utilizes a fractional step procedure.
The first step advances the concentration due to advection and external sources and sinks
having corresponding volume fluxes by

Hn+1C∗ = HnCn +
∆t
m

(
SE

s, j
)n+1/2

− ∆t
m

[
∂

∂x

(
Pn+1

2Cn
)
+

∂

∂y

(
Qn+1

2Cn
)
+

∂

∂ z

(
mwn+1

2Cn
)]

(6.4)

where the superscripts n and n+1 denote the old- and new-time levels and the superscript
∗ denotes the intermediate fractional step results. The portion of the source and sink term,
associated with volumetric sources and sinks is included in the advective step for consis-
tency with the continuity constraint. This source-sink term, as well as the advective field
(u, v, w,) is defined as intermediate in time between the old and new time levels consis-
tent with the temporal discretization of the continuity equation. Note that the sediment
class subscripts have been dropped for clarity. The advection step uses the anti-diffusive
MPDATA scheme (Smolarkiewicz and Clark, 1986) with optional flux corrected transport
(Smolarkiewicz and Grabowski, 1990).

The second fractional step or settling step is given by

C∗∗ =C∗+
∆t

Hn+1
∂

∂ z
(wsC∗∗) (6.5)
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Equation (6.5) is solved by a fully implicit upwind difference scheme

C∗∗k,c =C∗k,c +
∆t

∆zHn+1 (wsC∗∗)k,c (6.6)

C∗∗k =C∗k +
∆t

∆1Hn+1 (wsC∗∗)k+1−
∆t

∆kHn+1 (wsC∗∗)k with 2≤ k ≤ KC−1 (6.7)

C∗∗1 =C∗1 +
∆t

∆zHn+1 (wsC∗∗)2 (6.8)

where,

Ck is the concentration in each layer (g/m3),

C−1 is the bottom layer concentration, and

k is the layer index.

The solution starts at k = KC and marches downward to the bottom layer. The implicit
solution includes an optional anti-diffusion correction across internal water column layer
interfaces. The third fractional step accounts for water column-bed exchange by resuspen-
sion and deposition through the following,

C∗∗∗1 =C∗∗1 +
∆t

∆zHn+1 L0J∗∗∗0 (6.9)

where L0 is a flux limiter such that only the current top layer of the bed can be com-
pletely resuspended in single time step. For resuspension and deposition of suspended
non-cohesive sediment, the bed flux is given by

J∗∗∗0 =
ws

v

(
µCeq−C∗∗∗1

)
(6.10)

which will be further discussed in the next section. For cohesive sediment resuspension,
the bed flux is specified as a function of the bed stress and bed geomechanical properties.
For cohesive sediment deposition, the bed flux is typically given by

J∗∗∗0 =−PdwsC∗∗∗1 (6.11)

where, Pd is a probability of deposition. The representation of the water column bed ex-
change by a distinct fractional step is equivalent to a splitting of the bottom boundary
condition equation (6.2) such that the bed flux is imposed at the intermediate step between
settling and vertical diffusion.

The remaining step is an implicit vertical turbulent diffusion step corresponding to,

Cn+1 =C∗∗∗+∆t
∂

∂ z

[(
Ab

H2

)n+1
∂

∂ z
Cn+1

]
(6.12)

with zero diffusive fluxes at the bed and water surface.
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6.2.3 Definitions

The void ratio, ε , is defined as the ratio of the volume of voids, φ , to the total volume
of the soil (dimensionless).

ε =
φ

1−φ
(6.13)

The bulk density ρb is defined as the dry weight of soil per unit volume of soil (kg/m3).
The relationship between dry and bulk density is represented by,

ρd = ρs
(ρb−ρw)

(ρs−ρw)
(6.14)

where ρs is the solids or grain density (kg/m3) and ρw is the water density (kg/m3).

6.3. Original EFDC+ Sediment Transport

The original implementation of sediment transport involves the transport of both non-
cohesive and cohesive sediments.

6.3.1 Non-Cohesive Sediments

6.3.1.1 Settling Velocity

Non-cohesive inorganic sediments settle as discrete particles where hindered settling
and multiphase interactions are important in regions of high sediment concentration near
the bed. At low concentrations, the settling velocity for the jth non-cohesive sediment class
corresponds to the settling velocity of a discrete particle,

ws j = wso j (6.15)

where wso j is the discrete particle settling velocity that depends on the sediment density,
effective grain diameter, and fluid kinematic viscosity. A piece-wise relation for wso j by
Rijn (1984) is as follows,

wso j =
√

g′d j


Rd j
18 , d ≤ 100 µm
10
Rd j

(√
1+0.01R2

d j−1
)
, 100µm < d j ≤ 1000 µm

1.1 , d j > 1000µm

(6.16)

where g′ is the reduced gravitational acceleration and represented as,

g′ = g
(

ρs j

ρw
−1
)

(6.17)
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and Rd j is the sediment grain densimetric Reynolds number and calculated as,

Rd j =
d j
√

g′d j

ν
(6.18)

At higher concentrations and hindering settling conditions, the settling velocity is less
than the discrete velocity and can be expressed in the form,

ws j =

(
1−

I

∑
i

Ci

ρsi

)n

wso j (6.19)

where ρs is the sediment particle density with values of n ranging from 2 (Cao et al., 1996)
to 4 (Rijn, 1984). The expression (6.16) is approximated to within 5 percent by

ws j =

(
1−n

I

∑
i

Ci

ρsi

)
wso j (6.20)

for total sediment concentrations up to 200,000 mg/l. For total sediment concentrations
less than 25,000 mg/l, neglecting the hindered settling correction results in less than a 5%
error in the settling velocity. This is well within the range of uncertainty in parameters used
to estimate the discrete particle settling velocity.

6.3.1.2 Deposition, Resuspension, and Bedload

Non-cohesive sediment is transported as bedload and suspended load. The initiation of
both modes of transport begins with erosion or resuspension of sediment from the bed when
the bed stress τb, exceeds a critical stress referred to as the Shield’s stress τcs.The Shield’s
stress depends upon the density and diameter of the sediment particles and the kinematic
viscosity of the fluid and can be expressed in empirical dimensionless relationships of the
form:

θcs j =
τcs j

g′d j
=

u2
∗cs j

g′d j
= f

(
Rd j
)

(6.21)

Useful numerical expressions of the relationship of equation (6.19), provided by Rijn
(1984) are:

θcs j =



0.24
(

R2/3
d j

)−1
, R2/3

d j < 4

0.14
(

R2/3
d j

)−0.64
, 4≤ R2/3

d j < 10

0.04
(

R2/3
d j

)−0.1
, 10≤ R2/3

d j < 20

0.013
(

R2/3
d j

)0.29
, 20≤ R2/3

d j < 150

0.055 , R2/3
d j ≥ 150

(6.22)
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A number of approaches have been used to distinguish whether a particular sediment
size class is transported as bedload or suspended load under specific local flow conditions
characterized by the bed stress or bed shear velocity:

u∗ =
√

τb (6.23)

The approach proposed by Rijn (1984) is used in the EFDC+ model and is as follows.
When the bed velocity is less than the critical shear velocity

u∗cs j =
√

τcs j =
√

g′d jθcs j (6.24)

no erosion or resuspension takes place and there is no bedload transport. Sediment in
suspension under this condition will deposit to the bed as will be subsequently discussed.

When the bed shear velocity exceeds the critical shear velocity but remains less than
the settling velocity,

u∗cs j < u∗ < wso j (6.25)

sediment will be eroded from the bed and transported as bedload. Sediment in suspension
under this condition will deposit to the bed. When the bed shear velocity exceeds both the
critical shear velocity and the settling velocity, bedload transport ceases and the eroded or
resuspended sediment will be transported as suspended load. For grain diameters less than
approximately 1.3× 10−4 m (130µm), the settling velocity is less than the critical shear
velocity and sediment resuspend from the bed when the bed shear velocity exceeds the
critical shear velocity will be transported entirely as suspended load. For grain diameters
greater than 1.3× 10−4 m, eroded sediment can be transported by bedload in the region
corresponding to equation (6.25) and then as suspended load when the bed shear velocity
exceeds the settling velocity.

In the EFDC+ model, the preceding set of rules are used to determine the mode of
transport of multiple size classes of non-cohesive sediment. Bedload transport is deter-
mined using a general bedload transport rate formula:

qB

ρsd
√

g′d
= φ (θ ,θcs) (6.26)

where qB is the bedload transport rate (mass per unit time per unit width) in the direction
of the near bottom horizontal flow velocity vector. The function φ depends on the Shield’s
parameter:

θ =
τb

g′d j
=

u2
∗

g′d j
(6.27)

and the critical Shield’s parameter defined by the equations (6.21) and (6.22). A number
of bedload transport formulas explicitly incorporate the settling velocity. However, since
both the critical Shield’s parameter and the settling velocity are unique functions of the
sediment grain densimetric Reynolds number, the settling velocity can also be expressed as
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a function of the critical Shield’s parameter with equation (6.27) remaining an appropriate
representation.

A number of bedload formulations developed for riverine prediction (Ackers and White,
1973; Laursen, 1958; Yang, 1973; Yang and Molinas, 1982) do not readily conform to
equation (6.27) and were not incorporated as options in the EFDC+ model. Two widely
used bedload formulations which do conform to equation (6.27) are found in Meyer-Peter
and Müller (1948) and Bagnold (1956) and their derivatives in Reid and Frostick (1994),
which have the general form

$(θ ,θcs) = φ (θ −θcs)
α
(√

θ − γ
√

θcs

)β

(6.28)

where,

φ = φ (θcs) or φ = φ (Rd) (6.29)

The Meyer-Peter and Muller formulations are typified by

Φ = φ (θ −θcs)
3/2 (6.30)

while Bagnold formulations are typified by

Φ = φ (θ −θcs)
(√

θ − γ
√

θcs

)
(6.31)

with Bagnold’s original formula having γ equal to zero. The Meyer-Peter and Muller for-
mulation has been extended to heterogeneous beds by Suzuki et al. (1998), while Bagnold’s
formula has been similarly extended by (van Niekerk et al., 1992). The bedload formulation
by Rijn (1984) having the form

Φ = φ (θ −θcs)
2.1

φ =
0.053

R1/5
d θ 2.1

cs

(6.32)

has been incorporated into the CH3D-SED model and modified for heterogeneous beds
by Spasojevic and Holly Jr (1994). Equation (6.32) can be implemented in the EFDC+
model with an appropriately specified φ . A modified formulation of the Einstein bedload
function (Einstein, 1950) which conforms to equations (6.27) and (6.28) has been presented
by Rahmeyer (1999) and will be later incorporated into the EFDC+ model.

The procedure for coupling bedload transport with the sediment bed in the EFDC+
model is as follows. First, the magnitude of the bedload mass flux per unit width is calcu-
lated according to equation (6.27) at horizontal model cell centers, denoted by the subscript
C. The cell center flux is then transformed into cell center vector components using
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qbcx =
u√

u2 + v2
qbc

qbcy =
v√

u2 + v2
qbc

(6.33)

where, u and v are the cell center horizontal velocities near the bed. Cell face mass fluxes
are determined by downwind projection of the cell center fluxes

qb f x = (qbcx)upwind

qb f y =
(
qbcy
)

upwind
(6.34)

where the subscript upwind denotes the cell center upwind of the x normal and y normal
cell faces. The net removal or accumulation rate of sediment material from the deposited
bed underlying a water cell is then given by:

mxmyJb =
(
myqb f x

)
e−
(
myqb f x

)
w +

(
mxqb f y

)
n−
(
mxqb f y

)
s (6.35)

where,

Jb is the net removal rate (gm/m2− sec) from the bed,

mx and my are x and y dimensions of the cell, and

e,w,n,s represent the compass direction subscripts, which define the four cell faces.

The implementation of equations (6.33) through (6.35) in the EFDC+ code includes
logic to limit the out fluxes equation (6.34) over a time step, such that the time integrated
mass flux from the bed does not exceed bed sediment available for erosion or resuspension.

Under conditions when the bed shear velocity exceeds the settling velocity and criti-
cal Shield’s shear velocity, non-cohesive sediment will be resuspended and transported as
suspended load. When the bed shear velocity falls below both the settling velocity and the
critical Shield’s shear velocity, suspended sediment will deposit to the bed.

A consistent formulation of these processes can be developed using the concept of a
near bed equilibrium sediment concentration. Under steady, uniform flow and sediment
loading conditions, an equilibrium distribution of sediment in the water column tends to
be established, with the resuspension and deposition fluxes canceling each other. Using
a number of simplifying assumptions, the equilibrium sediment concentration distribution
in the water column can be expressed analytically in terms of the near bed reference or
equilibrium concentration, the settling velocity, and the vertical turbulent diffusivity. For
unsteady or spatially varying flow conditions, the water column sediment concentration
distribution varies in space and time in response to sediment load variations, changes in
hydrodynamic transport, and associated nonzero fluxes across the water column-sediment
bed interface. An increase or decrease in the bed stress and the intensity of vertical turbulent
mixing will result in net erosion or deposition, respectively, at a particular location or time.
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To illustrate how an appropriate suspended non-cohesive sediment bed flux boundary
condition can be established, consider the approximation to the sediment transport equation
(6.1) for nearly uniform horizontal conditions

∂

∂ t
(HC) =

∂

∂ z

(
Ab

H
∂C
∂ z

+wzC
)

(6.36)

Integrating equation (6.36) over the depth of the bottom hydrodynamic model layer
gives

∂

∂ t

(
∆HC̄

)
= J0− J∆ (6.37)

where the over bar denotes the mean over the dimensionless layer thickness ∆. Subtracting
equation (6.37) from equation (6.36) gives

∂

∂ t

(
HC′

)
=

∂

∂ z

(
Ab

H
∂C
∂ z

+wzC
)
−
(

J0− J∆

∆

)
(6.38)

Assuming that the rate of change of the deviation of the sediment concentration from
the mean is small

∂

∂ t

(
HC′

)
<<

∂

∂ t

(
HC̄
)

(6.39)

allows equation (6.36) to be approximated by

∂

∂ z

(
Ab

H
∂C
∂ z

+wzC
)
=

(
J0− J∆

∆

)
(6.40)

Integrating equation (6.37) once gives

Ab

H
∂C
∂ z

+wzC = (J0− J∆)
z
∆
− J0 (6.41)

Very near the bed, equation (6.41) can be approximated by

Ab

H
∂C
∂ z

+wzC =−J0 (6.42)

Neglecting stratification effects and using the results of Section 5.3.2, the near bed diffu-
sivity is approximately

Ab

H
= Koq

l
H
∼= u∗κz (6.43)

Introducing equation (6.43) into (6.42) gives

∂C
∂ z

+
R
z

C =−R
z

Jo

ws
(6.44)

84 EFDC+ Theory Document



6. SEDIMENT TRANSPORT MODULE

where,

R =
ws

u∗κ
(6.45)

is the Rouse parameter. The solution of equation (6.44) is

C =− Jo

ws
+

C0

zR (6.46)

The constant of integration is evaluated using

C =Ceq at z = zeq and Jo = 0 (6.47)

which sets the near bed sediment concentration to an equilibrium value, defined just above
the bed under no net flux condition. Using equation (6.47), equation (6.46) becomes

C =

(
zeq

z

)R

Ceq−
Jo

ws
(6.48)

For non-equilibrium conditions, the net flux is given by evaluating equation (6.48) at
the equilibrium level

Jo = ws
(
Ceq−Cne

)
(6.49)

where Cne is the actual concentration at the reference equilibrium level. Equation (6.49)
clearly indicates that when the near bed sediment concentration is less than the equilibrium
value, a net flux from the bed into the water column occurs. Likewise when the concen-
tration exceeds equilibrium, a net flux to the bed occurs. For this case, when Cne is greater
than Ce

Jo =−wsCne

(
1−

Ceq

Cne

)
(6.50)

and the term inside the parenthesis in the equation (6.50) can be considered as the deposi-
tion factor which does not exceed unity.

For the relationship equation (6.49) to be useful in a numerical model, the bed flux must
be expressed in terms of the model layer mean concentration. For a three-dimensional

Jo = ws
(
C̄eq−C̄

)
(6.51)

where,

C̄eq =
ln
(
∆z−1

eq
)(

∆z−1
eq −1

)Ceq , R = 1

C̄eq =

(
∆z−1

eq
)1−R−1

(1−R)
(
∆z−1

eq −1
)Ceq , R 6= 1

(6.52)
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defines an equivalent layer mean equilibrium concentration in terms of the near bed equilib-
rium concentration. The corresponding quantities in the numerical solution bottom bound-
ary condition equation (6.9) are

wrCr =wsC̄eq

Pdws =ws
(6.53)

If the dimensionless equilibrium elevation, zeq exceeds the dimensionless layer thick-
ness, equation (6.33) can be modified to

C̄eq =
ln
(
M∆z−1

eq
)(

M∆z−1
eq −1

)Ceq , R = 1

C̄eq =

(
M∆z−1

eq
)1−R−1

(1−R)
(
M∆z−1

eq −1
)Ceq , R 6= 1

(6.54)

where the over bars in equations (6.51) and (6.53) implying an average of the first M layers
above the bed.

For two-dimensional depth averaged model application, a number of additional con-
siderations are necessary. For depth average modeling, the equivalent of equation (6.41)
is

Ab

H
∂C
∂ z

+wsC =−Jo (1− z) (6.55)

Neglecting stratification effects and using the results of the sediment boundary layers, the
diffusivity is

Ab

H
= Koq

1
H
∼= u∗κz(1− z)λ (6.56)

Introducing equation (6.56) into equation (6.55) gives

∂C
∂ z

+
R

z(1− z)λ
C =−R(1− z)1−λ

z
Jo

ws
(6.57)

A closed form solution of equation (6.57) is possible for λ equal to zero. Although the
resulting diffusivity is not as reasonable as the choice of λ equal to one, the resulting ver-
tical distribution of sediment is much more sensitive to the near bed diffusivity distribution
than the distribution in the upper portions of the water column. For λ equal to zero, the
solution of equation (6.57) is

C =−
(

1− Rz
(1+R)

)
Jo

ws
+

C0

zR (6.58)
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Evaluating the constant of integration using equation (6.56) gives

C =

(
zeq

z

)R

Ceq−
(

1− Rz
(1+R)

)
Jo

ws
(6.59)

For non-equilibrium conditions, the net flux is given by evaluating equation (6.59) at
the equilibrium level

Jo = ws

(
1+R

1+R
(
1− zeq

))(Ceq−Cne
)

(6.60)

where Cne is the actual concentration at the reference equilibrium level. Since zeq is on the
order of the sediment grain diameter divided by the depth of the water column, equation
(6.60) is essentially equivalent to equation (6.49). To obtain an expression for the bed flux
in terms of the depth average sediment concentration, equation (6.59) is integrated over the
depth to give

Jo = ws

(
2(1+R)

2+R
(
1− zeq

))(C̄eq −C̄
)

(6.61)

where,

C̄eq =
ln
(
z−1

eq
)(

z−1
eq −1

)Ceq, R = 1

C̄eq =

(
zR−1

eq −1
)

(1−R)
(
z−1

eq −1
)Ceq, R 6= 1

(6.62)

The corresponding quantities in the numerical solution bottom boundary condition
equation (6.9) are

wrsr = ws

(
2(1+R)

2+R
(
1− zeq

))C̄eq

Pdws =

(
2(1+R)

2+R
(
1− zeq

))ws

(6.63)

When multiple sediment size classes are simulated, the equilibrium concentrations
given by equations (6.52), (6.54), and (6.62) are adjusted by multiplying by their respective
sediment volume fractions in the surface layer of the bed.

The specification of the water column-bed flux of non-cohesive sediment has been re-
duced to specification of the near bed equilibrium concentration and its corresponding ref-
erence distance above the bed. Garcia and Parker (1991) evaluated seven relationships,
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derived by combinations of analysis and experiment correlation, for determining the near
bed equilibrium concentration as well as proposing a new relationship. All of the rela-
tionships essentially specify the equilibrium concentration in terms of hydrodynamic and
sediment physical parameters

Ceq =Ceq (d,ρs,ρw,ws,u∗,v) (6.64)

including the sediment particle diameter, the sediment and water densities, the sediment
settling velocity, the bed shear velocity, and the kinematic molecular viscosity of water.
Garcia and Parker concluded that the representations of Smith and McLean (1977) and
Rijn (1984) as well as their own proposed representation perform acceptably when tested
against experimental and field observations.

Smith and McLean’s formula for the equilibrium concentration is

Ceq = ρs
0.65γoT
1+ γoT

(6.65)

where γo is a constant equal to 2.4×10−3 and T is given by

T =
τb− τcs

τcs
=

u2
∗−u2

∗cs
u2
∗cs

(6.66)

where,

τb is the bed stress, and

τcs is the critical Shields stress.

The use of Smith and McLean’s formulation requires that the critical Shields stress be
specified for each sediment size class. Van Rijn’s formula is

Ceq = 0.015ρs
d

z∗eq
T 3/2R−1/5

d (6.67)

where,

z∗eq = Hzeq is the dimensional reference height, and

Rd is a sediment grain Reynolds number.

When van Rijn’s formula is select for use in EFDC+, the critical Shields stress in in-
ternally calculated using relationships from Rijn (1984). Van Rijn suggested setting the
dimensional reference height to three grain diameters. In the EFDC+ model, the user spec-
ifies the reference height as a multiple of the largest non-cohesive sediment size class di-
ameter.

Garcia and Parker (1991) general formula for multiple sediment size classes is
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C jeq = ρs
A
(
λZ j

)5(
1+3.33A(λZ)5

) (6.68)

Z j =
u∗
ws j

R3/5
d j FH (6.69)

FH =

(
d j

d50

)1/5

(6.70)

λ = 1+
σφ

σφo
(λo−1) (6.71)

where,

A is a constant equal to 1.3×10−7,

d50 is the median grain diameter based on all sediment classes,

λ is a straining factor,

FH is a hiding factor, and

σø is the standard deviation of the sedimentological phi scale of sediment size distri-
bution.

Garcia and Parker (1991) formulation is unique in that it can account for armoring ef-
fects when multiple sediment classes are simulated. For simulation of a single non-cohesive
size class, the straining factor and the hiding factor are set to one. The EFDC+ model has
the option to simulate armoring with Garcia and Parker’s formulation. For armoring simu-
lation, the current surface layer of the sediment bed is restricted to a thickness equal to the
dimensional reference height.

6.3.2 Cohesive Sediments

6.3.2.1 Settling Velocities

The settling of cohesive inorganic sediment and organic particulate material is an ex-
tremely complex process. Inherent in the process of gravitational settling is the process
of flocculation, where individual cohesive sediment particles and particulate organic parti-
cles aggregate to form larger groupings or flocs having settling characteristics significantly
different from those of the component particles (Burban et al., 1989, 1990; Gibbs, 1985;
Mehta et al., 1989). Floc formation is dependent upon the type and concentration of the
suspended material, the ionic characteristics of the environment, and the fluid shear and
turbulence intensity of the flow environment. Progress has been made in first principles
mathematical modeling of floc formation or aggregation, and disaggregation by intense
flow shear (Lick and Lick, 1988; Tsai et al., 1987). However, the computational cost of
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Fig. 6.1. Critical Shield’s shear velocity and settling velocity as a function of sediment grain size

such approaches precludes direct simulation of flocculation in operational cohesive sedi-
ment transport models currently.

An alternative approach, which has been applided with reasonable success, is the pa-
rameterization of the settling velocity of flocs in terms of cohesive and organic material
fundamental particle size d, concentration S, and flow characteristics such as vertical shear
of the horizontal velocity du/dz, shear stress Avdu/sz, or turbulence intensity in the water
column or near the sediment bed q. This has allowed semi-empirical expressions having
the functional form

wse = wse

(
d,C,

du
dz

,q
)

(6.72)

to be developed to represent the effective settling velocity. The following settling ap-
proaches are available in EFDC+.
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6.3.2.1.1 Option 1

Hwang and Mehta (1989) proposed the following

ws =
aC′′

(C2 +b2)
m (6.73)

based on observations of settling at six sites in Lake Okeechobee. This equation has a
general parabolic shape with the settling velocity decreasing with decreasing concentration
at low concentrations and decreasing with increasing concentration at high concentration.
Least squares analysis for the parameters a, m, n, in equation (6.73) was shown to agree
well with observational data. Equation (6.73) does not have a dependence on flow char-
acteristics, but is based on data from an energetic field condition having both currents and
high frequency surface waves.

6.3.2.1.2 Option 2

The formulation given by Shrestha and Orlob (1996) and as subsequently modified by
Mehta et al. (1989) has the form

cws =Cα exp(−4.21+0.147G) (6.74)
α = 1.11075+0.0386G (6.75)

where,

G =

√(
∂u
∂ z

)2

+

(
∂v
∂ z

)2

(6.76)

is the magnitude of the vertical shear of the horizontal velocity. It is noted that all
of these formulations are based on specific dimensional units for input parameters and
predicted settling velocities and that appropriate unit conversion are made internally in
their implementation in the EFDC+ model.

6.3.2.1.3 Option 3

Ziegler and Nisbet (1994, 1995) proposed a formulation to express the effective settling
as a function of the floc diameter d f

ws = adb
f (6.77)

with the floc diameter given by:

d f =

√√√√ α f

C
√

τ2
xz + τ2

yz

(6.78)
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where,

C is the sediment concentration

α j is an experimentally determined constant

τxz and τyz are the x and y components of the turbulent shear stresses at a given position
in the water column

Other quantities in equation (6.78) have been experimentally determined to fit the relation-
ships:

a = B1

(
C
√

τ2
xz + τ2

yz

)−0.85
(6.79)

b =−0.8−0.5log
(

C
√

τ2
xz + τ2

yz−B2

)
(6.80)

where B1 and B2 are experimental constants.

6.3.2.1.4 Option 4

Generalized approach to compute settling velocities based on shear stress is as follows:

ws =


1.510×10−5(C′)0.45 , C′ < 40
8×10−5 , 40≤C′ ≤ 400
0.893×10−6(C′)0.75 , C′ > 400

(6.81)

C′ = τC (6.82)

where, τ is shear stress (cm2/s2), and C is total cohesive concentration (g/m3).

6.3.2.1.5 Option 5

The following approach for settling velocities are based on the Housatonic River ap-
proach combining Burban & Lick with site specific regressions.

ws =

{
1.270

86400(C′)0.79 , C′ < 3.8
3.024

86400(C′)0.14 , C′ ≥ 3.8
(6.83)

C′ = τC (6.84)

where, τ is shear stress (cm2/s2) and C is total cohesive concentration (g/m3).
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6.3.2.1.6 Option 6

Generalized approach to compute settling velocities based on shear stress is as follows:

ws =

{
2.32×10−5(C′)0.5, C′ < 100
3.68×10−5(C′)0.4, C′ ≥ 100

(6.85)

C′ = τC (6.86)

where, τ is shear stress (cm2/s2) and C is total cohesive concentration (g/m3).

6.3.2.1.7 Option 7

Generalized approach to compute settling velocities based on shear stress is as follows:

ws = 0.0052(C′)0.470138 (6.87)

C′ = τC (6.88)

where, τ is shear stress (m2/s2) and C is total cohesive concentration (g/m3).

6.3.2.1.8 Option 8

A modified Shrestha and Orlob (1996) approach to compute settling velocities based
on shear stress is as follows:

ws = a
(

C
2650

)0.3333

(6.89)

a =

{
0.06√

τ
, τ ≥ 0.1

0.1 , τ ≤ 0.1
(6.90)

where, τ is shear stress (m2/s2) and C is total cohesive concentration (g/l).

6.3.2.2 Deposition

Water column-sediment bed exchange of cohesive sediments and organic solids is con-
trolled by the near bed flow environment and the geomechanics of the deposited bed. Net
deposition to the bed occurs as the flow-induced bed surface stress decreases. The most
widely used expression for the depositional flux is:

Jd
o =

{
−wsCd

(
τcd−τb

τcd

)
=−wsPdCd τb ≤ τcd

0, τb ≥ τcd
(6.91)

where,
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τb is the stress exerted by the flow on the bed,

τcd is a critical stress for deposition which depends on sediment material and floc
physiochemical properties (Mehta et al., 1989), and

Cd is the near bed depositing sediment concentration.

The probability of deposition Pd is based on the linear term, (τcd−τb)/τcd. The critical
deposition stress is generally determined from laboratory or in situ field observations and
values ranging from 0.06 to 1.1 N/m2 have been reported in the literature. Given this wide
range of reported values, in the absence of site specific data, the depositional stress and is
generally treated as a calibration parameter. The depositional stress is an input parameter
in the EFDC+ model.

6.3.2.3 Erosion

Cohesive bed erosion occurs in two distinct modes, mass erosion and surface erosion.
Mass erosion occurs rapidly when the bed stress exerted by the flow exceeds the depth
varying shear strength τs, of the bed at a depth Hme, below the bed surface. Surface erosion
occurs gradually when the flow-exerted bed stress is less than the bed shear strength near
the surface but greater than a critical erosion or resuspension stress τce, which is depen-
dent on the shear strength and density of the bed. A typical scenario under conditions of
accelerating flow and increasing bed stress would involve first the occurrence of gradual
surface erosion, followed by a rapid interval of mass erosion, followed by another interval
of surface erosion. Alternately, if the bed is well consolidated with a sufficiently high shear
strength profile, only gradual surface erosion would occur. Transport into the water column
by mass or bulk erosion can be expressed in the form

Jr
o = wrCr =

mme (τs ≤ τb)

Tme
(6.92)

where,

Jo is the erosion flux,

WCr represents the numerical boundary condition equation (6.9),

mme is the dry sediment mass per unit area of the bed having a shear strength,

τs less than the flow-induced bed stress, and

τb and Tme is a somewhat arbitrary time scale for the bulk mass transfer.

The time scale can be taken as the numerical model integration time step (Shrestha and
Orlob, 1996). Observations by Hwang and Mehta (1989) have indicated that the maximum
rate of mass erosion is on the order of 0.6 gs−1m−2 which provides a means of estimating
the transfer time scale in equation (6.92). The shear strength of the cohesive sediment bed
is generally agreed to be a linear function of the bed bulk density (Hwang and Mehta, 1989;
Mehta et al., 1982; Villaret and Paulic, 1986).
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τs = asρb +bs (6.93)

For the shear strength in N/m2 and the bulk density in g/cm3, Hwang and Mehta
(1989) give as and bS values of 9.808 and −9.934, respectively for bulk density greater
than 1.065 g/cm3. The EFDC+ model currently implements Hwang and Mehta (1989)
relationship, but can be readily modified to incorporate other functional relationships.

Surface erosion is generally represented by relationships of the form

Jr
o = wrCr =

dme

dt

(
τb− τce

τce

)α

, τb ≥ τce (6.94)

or

Jr
o = wrCr =

dme

dt
exp
(
−β

(
τb− τce

τce

)γ )
, τb ≥ τce (6.95)

where

dme
dt is the surface erosion rate per unit surface area of the bed,

τce is the critical stress for surface erosion or resuspension.

The critical erosion rate and stress and the parameters α, β , and γ are generally deter-
mined from laboratory or in situ field experimental observations. Equation (6.94) is more
appropriate for consolidated beds, while (6.95) is appropriate for soft partially consoli-
dated beds. The base erosion rate and the critical stress for erosion depend upon the type
of sediment, the bed water content, total salt content, ionic species in the water, pH and
temperature (Mehta et al., 1989) and can be measured in laboratory and sea bed flumes.

Surface erosion rates ranging from 0.005 to 0.1 gs−1m−2 have been reported in the
literature, and it is generally accepted that the surface erosion rate decreases with increas-
ing bulk density. The critical erosion stress is related to but generally less than the shear
strength of the bed, which in turn depends upon the sediment type and the state of con-
solidation of the bed. Experimentally determined relationships between the critical surface
erosion stress and the dry density of the bed of the form

τce = cρ
d
s (6.96)

have been presented (Mehta et al., 1989).
The EFDC+ model allows for a user defined constant critical stress for surface erosion

or the use of a computed τce based on one of the following options.

6.3.2.3.1 Option 1

Hwang and Mehta (1989) proposed the relationship
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τce =

{
a(ρb−ρl)

b + c, ρb > 1.065
0, ρb ≤ 1.065

(6.97)

between the critical surface erosion stress and the bed bulk density with a = 0.883, b =
0.2, c = 0.05, and ρl = 1.065 for the stress in N/m2 and the bulk density in g/cm3.

6.3.2.3.2 Options 2 and 3

Sanford and Maa (2001) proposed the relationship

τce = τci
(1+V Rr)

(1+V Rb)
(6.98)

where

τci is the reference critical surface erosion rate (m2/s2)

V Rr and V Rb are the void ratios of the reference and the bed, respectively (dimension-
less).

6.3.2.3.3 Options 4 and 5

This option is governed by the relationship:

τce = τci (6.99)

where τci is the reference critical surface erosion rate (m2/s2).

6.3.2.3.4 Option 99

The Housatonic River relationship is

τce =
{ 0.2

1000 , L≤ 265 0.4
1000 , L > 265 (6.100)

where L is the EFDC+ linear cell index. This is a hardwired option for the Housatonic
River.

6.3.3 Consolidation of Mixed Cohesive and Non-Cohesive Sediment Beds

This section presents a methodology for representing consolidation of sediment beds
containing both cohesive and non-cohesive sediments. The methodology allows for both
cohesive and non-cohesive sediment in any bed layer and is based on the following as-
sumptions. First, it is assumed that during the consolidation step, a fraction of the bed pore
water volume per unit horizontal area is associated with each sediment type or(

εHbed

1+ ε

)
= (ψwc +ψwn)Hbed (6.101)
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where,

Hbed is the bed thickness (m)

ψ is the volume fraction of water with the subscripts

wc and wn denoting cohesive and non-cohesive sediment, respectively.

Likewise, the volume of sediment per unit horizontal area can be fractionally partitioned
between cohesive and non-cohesive(

Hbed

1+ ε

)
= (ψsc +ψsn)Hbed (6.102)

Following the Lagrangian formulation of the previous section, the total volume of sed-
iment and the fractional sediment volume in a bed layer remain constant during a consoli-
dation step.

∂

∂
(Hbedψsc) =

∂

∂
(Hbedψsn) = 0 (6.103)

Fractional void ratios can also be defined

εc =
ψwc

ψsc
(6.104)

εn =
ψwn

ψsn
(6.105)

and using equations (6.101) and (6.102), the void ratio of the mixture is

ε =
ψscεc +ψsnεn

ψsc +ψsn
(6.106)

which is the sediment volume weighted average of the void ratios of the two sediment
types.

The second assumption is that during the consolidation time step, the fraction of water
associated with non-cohesive sediment remains constant, as does the fractional void ratio.
This is equivalent to the assuming that the portion of the bed layer associated with non-
cohesive sediment is incompressible, and that the pore water associated the non-cohesive
sediment is specified by εn.

Consistent with the preceding assumptions, the thickness of the bed layer can be divided
into cohesive and non-cohesive fractions Hbed,c and Hbed,n, respectively.

Hbed,c =(ψwc +ψsc)Hbed = (1+ εc)ψscHbed

Hbed,n =(ψwn +ψsn)Hbed = (1+ εn)ψsnHbed
(6.107)

The hydraulic conductivity of the layer can be expressed by
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K =

(
Hbed,c +Hbed,n

)(
Hbed,c

Kc
+

Hbed,n
Kn

) (6.108)

which is equivalent to an infinite number of alternating infinitesimal cohesive and non-
cohesive sublayers of proportional thickness comprising the mixed bed layer. Equation
(6.108) can be written as

K
(1+ ε)

=
1(

fsc
(1+εc)

Kc
+ fsn

(1+εn)
Kn

) (6.109)

where,

fsc =
ψsc

(ψsc +ψsn)

fsn =
ψsn

(ψsc +ψsn)

(6.110)

are the time invariant total cohesive and non-cohesive sediment fractions in the bed layer.
Likewise, equation (6.106) can be written as

ε = fscεc + fsnεn (6.111)

The final assumption for the mixed material consolidation formulation is that changes
in effective stress are due entirely to changes in the cohesive void ratio. Under this assump-
tion, the specific discharge can be written as

q =−
(

K
1+ ε

)
k+1

2

2λ
k+1

2
(∆k+1 +∆k)

[
( fscεc)k+1− ( fscεc)k

]
+

(
K

1+ ε

)
k+1

2

(
ρ̄s

ρw
−1
)

k+1
2

(6.112)
and

λ
k+1

2
=− 1

gρw

(
σe,k+1−σe,k

( fscεc)k+1− ( fscεc)k

)
(6.113)

When the depositional void ratio is specified for the surface layer specific discharge be-
comes

qw:kt+ =−
(

2λkt+

∆kt

)(
K

1+ ε

)
kt+

[
(εc)dep− (εc)k

]
+

(
ρ̄s

ρw
−1
)

kt+

(
K

1+ ε

)
kt+

(6.114)

When the zero excess pore pressure boundary condition at the bed surface is used
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qw:kt+ =

(
K

1+ ε

)
Kt

2
∆Kt

(
λ
∗ fscε

n+1
c
)

Kt

+

(
K

1+ ε

)
Kt

(
ρ̄s

ρw
−1
)

Kt
−
(

K
1+ ε

)
Kt

2
∆Kt

(
σn

e
gρw

+λ
∗ fscε

∗
)

Kt
(6.115)

The equation for updating the void ratio is modified using equation (6.111) to give

( fscεc)
∗∗
k = ( fscεc)

∗
k +

∆t
2

(
1+ ε

Hbed

)∗∗
k
(qw:k−qw:k+) (6.116)

Thus the mixed bed layer consolidation formulation essentially solves of the space and
time evolution of fscεc with the continuum constitutive relationship for λ given by

λ =− 1
fsc

∂

∂ε

(
σ

gρw

)
(6.117)

The formulation has the desirable characteristic of reducing to the well established cohesive
formulation in the absence of non-cohesive material. The solution for fscεc proceeds by
introducing equations (6.102) and (6.104) or (6.105) into (6.106) and solving the resulting
tri-diagonal system of equations. The new specific discharges are then directly calculated
using equations (6.102) and (6.104) or (6.105) and used to update the layer thickness

Hn+1
bed,k = H∗bed,k +∆t (qw:k−−qw:k+) (6.118)

The ratio Hbed/(1+ ε) can then be updated(
Hbed

1+ ε

)n+1

k
=

(
Hbed

1+ ε

)∗
k

(6.119)

Followed by the solution of equation (6.111) for the cohesive void ratio

εc =
ε− fsnεn

fsc
(6.120)

6.4. SEDZLJ Sediment Transport

6.4.1 Overview

The EFDC+ model was extended in James et al. (2010) to include measured erosion
rates from an erosion rate measurement flume referred to as SEDFlume (Jones and Lick,
2001). The mathematical framework for the unified treatment of erosion, deposition and
bedload transport is referred to as the SEDZLJ model. This section of the EFDC+ theory
document provides a summary of the theory of SEDZLJ and larger is taken from Grace
et al. (2008); James et al. (2010); Jones and Lick (2001).

99 EFDC+ Theory Document



6. SEDIMENT TRANSPORT MODULE

A SEDFlume consists of a straight flume with an open bottom through which a rectan-
gular cross-section core tube containing sediment can be inserted. The main components
of the flume are the core tube and sediment, the test section, the inlet section for uniform,
fully-developed, turbulent flow, the flow exit section, the water storage tank, and the pump
(which forces water through the system). A schematic of the SEDFlume is shown in Figure
6.2. Data produced from these tests produce erosion rates, critical shear stress, and bulk
density by depth in a core.

Fig. 6.2. Schematic of the SEDFlume apparatus.

6.4.2 Introduction

Most models are calibrated using hind casting techniques which can have limitations
when extending the simulation to future conditions. The most typically available sediment
transport indicator measured in aquatic systems is the suspended sediment concentration.
Unfortunately, many different combinations of erosion and deposition rates can be used to
reach the same suspended sediment concentration. This can be illustrated as follows. In the
steady state, an equilibrium exists between erosion and deposition. Deposition is generally
described as D = PwsC where P is a probability of deposition, ws is the settling speed of
the sediment particles, and C is the sediment concentration in the water. Equilibrium then
gives

E−PwsC = 0 (6.121)

100 EFDC+ Theory Document



6. SEDIMENT TRANSPORT MODULE

This can be solved for the sediment concentration, which is

C =
E

Pws
(6.122)

From this equation, it is seen that any suspended sediment concentration can be matched
with an infinite number of erosion rates and deposition parameters by adjusting both ac-
cordingly. For example, the observed value of C can be obtained by high values of E and
high values of Pws or by low values of E and low values of Pws. In other words, mea-
surements of suspended sediment concentrations are not sufficient to determine erosion
and/or deposition, parameters essential for predicting sediment and contaminant transport
and fate. Historically, the erosion was constrained by theoretical relationships between
shear stress and grain sizes, however there was still a range of parameters that would pro-
duce the same suspended concentrations. In order to predict erosion and deposition accu-
rately, these quantities should be determined as functions of sediment characteristics and
hydrodynamic variables by means of experiments or theory based on experiments.

6.4.3 SEDZLJ Model

6.4.3.1 Bed Shear Stress

The bottom stress is represented by τb given by

τb = c fV (6.123)

where V is the velocity magnitude (cm/s) and c f is a bottom shear stress friction factor
calculated using a log-layer distribution of velocity. c f is given by

c f =


κ2(

ln H
2zb

)2 for H ≥ Hmin

0.0 for H < Hmin

(6.124)

where,

κ is von Karman’s constant (κ=0.42),

zb is bottom skin friction based on the d50 at the sediment surface (m), and

Hmin is the minimum depth to allow shear computations (m).

The bottom roughness is assumed to be equal to the average particle diameter of the
surface of the sediment bed at any given location. As the bottom roughness increases or as
the depth of water decreases, c f increases.
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6.4.3.2 Erosion Rates

Results of a typical application of SEDFlume are shown in Figure 6.3, where erosion
rates, E, in units of cm/s are plotted as a function of depth (cm) with shear stress τ (N/m2).
Erosion rates are generally highest at the surface and decrease with depth; they also in-
crease with shear stress. In general, information of this type for sediments throughout the
system is necessary for accurate predictions of sediment transport (Jones and Lick, 2000).
Availability of this type of data is assumed and is used in the present model.

Fig. 6.3. SEDFlume data for Conowingo Reservoir (DNR Maryland).

Information on erosion rates is generally reported in units of cm/s. In order to convert
this to a mass flux in units of g/cm2/s which is needed in the modeling, the mass of solids
within a sediment volume is needed. This quantity, for a sediment consisting of solids and
water only (i.e. no gas), can be determined in terms of the bulk density of the sediments ρ ,
as follows:
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ρ = ρsxs +ρwxw = ρsxs +ρw (1− xs) (6.125)

where,

ρs is the density of solids (g/cm3),

xs is the volume fraction of the solids,

ρw is the density of water (g/cm3), and

xw is the volume fraction of water.

Since xw = 1− xs, the mass of solids per unit volume is xsρs and can be determined
from the above equation as

xsρs =
ρs (ρ−ρw)

ρs−ρw
=

2.6
1.6

(ρ−1) (6.126)

where it is assumed that ρs = 2.6 g/cm3 and ρw = 1.0 g/cm3. Once the bulk density of the
sediments is known, the erosion rate in units of g/cm2s can be determined by multiplying
the erosion rate in units of cm/s by xsρs.

As indicated above, erosion rates change as a function of depth. This variation is incor-
porated into the sediment bed model through a discrete layering system where the erosion
rate is defined at each layer interface, and the particle size distribution and bulk density are
defined as constant throughout the layer. Any number and thickness of layers required to
approximate the variation of sediment properties with depth can be introduced as necessi-
tated by field data.

The sediment transport model developed herein can incorporate erosion rate data col-
lected in the field that are typically spatially discrete and at specific depths, but can be
interpolated where no direct data are available. The total erosion rate is interpolated across
sediment layer thicknesses and shear stresses. Linear interpolation is used to calculate an
erosion rate at a specified shear stress τ as

E (τ) =

(
τi+1− τ

τi+1− τi

)
Ei +

(
τ− τi

τi+1− τi

)
Ei+1 (6.127)

where, subscript i denotes data for a shear stress less than τ and i+ 1 denotes measured
data for a shear stress greater than τ, with τi<τ<τi+1.

Because E often changes rapidly with depth, the logarithmic interpolation between data
points best represents erosion rates as a function of depth

ln[E (T )] =
(

T0−T
T0

)
ln(E j)+

T
T0

ln
(
E j+1) (6.128)

where T is the actual layer thickness, T0 is the initial layer thickness, and the superscripts j
and j+1 denote data for the interface at the top and the bottom of the specific layer where
the erosion rate is required, respectively. Equations (6.127) and (6.128) are combined so
that the erosion rates may be calculated as a function of shear stress and depth.
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Fig. 6.4. Critical shear stresses for erosion and suspension of quartz particles.

6.4.3.2.1 Critical Shear Stress for Erosion

In addition to erosion rates, another parameter of significance in modeling is the critical
stress for erosion, τce. This quantity can be understood and quantified as follows. Consider
the flow of water over a sediment bed. As the rate of flow is increased starting from rest,
there is a range of velocities (or shear stresses) at which the movement of the easiest-to-
move particles (generally the smallest) is first noticeable to an observer. These eroded
particles then travel a relatively short distance until they come to rest in a new location.
This initial motion tends to occur only at a few isolated spots. As the flow velocity and
shear stress increase further, more particles participate in this process of erosion, transport,
and deposition, and the movement of the particles becomes more sustained.

Because of this gradual increase in sediment erosion as the shear stress increases, it
is difficult to precisely define a critical velocity or critical shear stress at which sediment
erosion is first initiated. More quantitatively and with less ambiguity, a critical shear stress
for erosion can be defined as the shear stress at which a small, but accurately measurable,
rate of erosion occurs. Roberts et al. (1998) defined this rate as 10−6 m/s, represented
by approximately 1 mm of erosion in 15 minutes, though different rates have been used to
define τce.

Critical shear stresses for erosion as a function of particle diameter d, are shown in
Figure 6.4. For d > 200 µm, the sediments behave in a non-cohesive manner, i.e., they
consolidate rapidly and they erode particle by particle. For d < 200 µm, cohesive effects
between particles become significant. The sediments consolidate relatively slowly with
time, and the critical stresses depend not only on particle diameter but also on the bulk
density of the sediments. For these cohesive sediments, τce increases as d decreases and as
bulk density increases.

For non-cohesive sediment beds, the curve of Shields (1936), or any approximation
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thereof Rijn (1984), could be used to define the critical shear stress for erosion. Soulsby
et al. (1997) approximated the critical shear for erosion as

τce = ρgdθ = ρgd
{

0.3
1+1.2d∗

+0.055 [1− exp(−0.02d∗) ]
}

(6.129)

d∗ = d
[
(ρsd/ρw−1)g/v2]1/3

(6.130)

where,

g is the acceleration due to gravity,

d the sediment particle diameter,

d∗ is the non-dimensional particle diameter,

v the kinematic fluid viscosity, and

θ the critical Shields parameter, represented by the algebraic fit shown in the paren-
thesis in equation (6.129)

6.4.3.2.2 Erosion into Suspended Load versus Bedload

As bottom sediments are eroded, a fraction of the sediments are suspended into the
overlying water and are transported as suspended load; the rest of the eroded sediments
move by rolling and/or saltation in a thin layer near the bed in what is called bedload. The
fraction in each of the transport modes depends on the particle size and shear stress.

For fine-grained particles (which are generally cohesive), erosion occurs both as indi-
vidual particles and in the form of chunks or small aggregates of particles. The individual
particles move as suspended load. The aggregates tend to move downstream near the bed
but generally seem to disintegrate into small particles in the high stress boundary layer near
the bed as they move downstream. These disaggregated particles then move as suspended
load. For this reason, it is assumed here that fine-grained sediments less than about 200 µm
are completely transported as suspended load.

Coarser, non-cohesive particles (defined here as those particles with diameters greater
than about 200 µm) can be transported both as suspended load and bedload, with the frac-
tion in each dependent on particle diameter and shear stress. For particles of a particular
size, the shear stress at which suspended load (or sediment suspension) is initiated is de-
fined as τcs(N/m2). This shear stress τcs, can be defined from the Rijn (1984) formulations
as

τcs =

 1
ρw

(
4ws
d∗

)2
, for d ≤ 400 µm

1
ρw
(0.4ws)

2 , for d > 400 µm
(6.131)

where,

105 EFDC+ Theory Document



6. SEDIMENT TRANSPORT MODULE

d∗ is the non-dimensional particle diameter calculated from d∗ = d
[
(ρs−ρ)

ρ

g
ν2

]1/3

where d is the particle diameter (cm), and

ws is the particle settling speed (cm/s)

For τb > τcs, sediments are transported both as bedload and suspended load with the
fraction in suspended load f , increasing with τb from f = 0 until f reaches 1. For τb

greater than this, sediments are transported completely as suspended load.
The settling speed can be determined from Cheng (1997) and Rijn (1984) or user spec-

ified. Cheng’s formula for settling speed is

ws =
v
d

(√
25+1.2d2

∗−5
)1.5

(6.132)

where ν is the kinematic fluid viscosity (cm2/s).
Since Cheng’s formula is based on the observations of the settling of real sediment

particles, it produces settling speeds lower than Stoke’s law. This is because real sediments
are often irregular in shape and have a greater hydrodynamic resistance to settling than
perfect spheres as in Stoke’s law.

Rijn (1984) computed the settling velocity as

ws =


1
18

[
(s−1)gD2

s
ν

]
, Ds < 100 µm

10 ν

Ds

{[
1+ 0.01(s−1)gD3

s
ν2

]0.5
−1
}

, 100 µm≤ Ds < 1000 µm

1.1 [(s−1)gDs]
0.5 , Ds ≥ 1000 µm

(6.133)

where,

Ds is the representative particle size (m), s is the specific density

g is the acceleration due to gravity (m/s2), and

ν is the kinematic viscosity coefficient and ws is in m/s.

Guy et al. (1966) performed detailed flume measurements of suspended load and bed-
load transport for sediments ranging in median diameter d50, from 190 µm to 930 µm.
They found that, as the ratio of shear velocity (defined as u∗ =

√
τb/ρw ) to settling veloc-

ity increases, the proportion of suspended load to total load transport, qs/qt increases. An
approximation of their data can be made with the following function:

qs

qt
=


0 , τb < τcs
ln(u∗/ws)−ln

(√
τcs/ρw/ws

)
ln(4)−ln

(√
τcs/ρw/ws

) , τb > τcs and u∗
ws

< 4

1 , u∗
ws

> 4

(6.134)
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Fig. 6.5. Results from flume measurements of suspended load and bedload (Guy et al., 1966).

This approximation is used here. The original data is shown with the result given by
the above equation in Figure 6.5.

Although sediments in nature have a continuous size distribution, physical quantities
in numerical models are inherently discrete; hence, sediment particle sizes are discretized.
The discretization of particle size classes j is done by measuring the different sediment
sizes in a site-specific sediment core and grouping into appropriate size classes. The sedi-
ment bed in the model is described as the product of the particle size class and the corre-
sponding mass fraction. By multiplying the total erosion flux of a particular size class j by
qs/qt , the erosion flux of that class into suspended load Es, j can be calculated. The corre-
sponding erosion flux into bedload Eb, j is also calculated by multiplying the total erosion
flux of the size class by the factor (1−qs/qt). Thus, the erosion flux for any size class j is

Es, j =

{
0, τb < τce
qs
qt

f jE , rτb ≥ τce
(6.135)

Eb, j =

{
0, τb < τce(

1− qs
qt

)
f jE, τb ≥ τce

(6.136)

where, f j is the mass fraction of the jth sediment size class.

6.4.3.3 Suspended Load

For suspended sediments, the three-dimensional, time dependent transport equation in
the water over the bed is shown in equation (6.1). The net sediment flux into suspension
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Qs, is calculated as the total erosion flux into suspended load Es, j, minus the deposition
flux from suspended load Ds, j, for each sediment size class j

Qs, j=Es, j−Ds, j (6.137)

where,

Qs=∑
j

Qs, j (6.138)

In a quiescent fluid where no shear stress is present, the deposition flux for suspended
sediments can be described as the product of the settling speed of the sediment and the con-
centration of the sediment in the overlying water. However, in flowing water, the deposition
is affected by the fluid turbulence, quantified as shear stress. In this case, a probability of
deposition for each size class j, Pk, can be included in the formulation to account for the
effects of the shear stress to yield

Ds j=Pjws jCs j (6.139)

This probability would be unity in the case of quiescent flow and decrease as the flow,
turbulence, and shear stress increase. The probability for suspended load deposition seems
to differ for cohesive and non-cohesive particle sizes. For cohesive particles, size classes
with effective diameters less than 200 µm, Krone (1962) found that the probability of de-
position varied approximately as

Pj =

{
0 for τbτcs, j(

1− τb

τcs, j

)
for τb > τcs, j

(6.140)

For larger non-cohesive particles, size classes with an effective diameter greater than
200 µm, Gessler (1967) showed that the probability of deposition could be described with
a Gaussian distribution, or error function given by

Pj (Y )=erf
(

Y
2

)
=

2√
π

∫ Y/2

0
exp
(
−ξ

2) dξ (6.141)

where,

Y=
1
σ

(
τcs, j

τb −1
)

(6.142)

where, τcs, j is the critical shear stress for suspension for size class j and σ is the standard
deviation for shear stress variation, which Gessler (1967) determined to be about 0.57.

An approximation to this function for Y > 0 with an error of less than 0.001% is found
to be (Abramowitz, 1964; Dwight, 1947)

Pj= 1−F(Y )(0.4632X−0.1202X2+0.9373X3) (6.143)

108 EFDC+ Theory Document



6. SEDIMENT TRANSPORT MODULE

Fig. 6.6. Sample probability distributions for cohesive and non-cohesive particles.

where,

F (Y )=
1

(2π)1/2 e−
1
2Y 2

(6.144)

X=
1

(1+0.33267Y )
(6.145)

When Y < 0

Pj= 1−P(|Y |) (6.146)

Figure 6.6 shows sample probability distributions using the formulations for cohesive
and non-cohesive particles.

6.4.3.4 Bedload

For the description of bedload transport, the Rijn (1984) approach is used. To calculate
the concentration of particles moving in bedload, a mass balance equation can be written
as

∂ (mCb)

∂ t
=

∂ (mqbx)

∂x
+

∂ (mqby)

∂y
+Qb (6.147)

where,
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Cb is the bedload concentration (g/cm2),

qb is the horizontal bedload flux in the x or y directions (g/s/cm),

m is the cell area (cm2), and

Qb is the net vertical flux of sediments between the sediment bed and bedload (g/s).

This equation is solved using a central difference approximation for the fluxes in the x
and y directions. The horizontal bedload flux in general is calculated as

qb=ubCb (6.148)

where ub is the bedload velocity (cm/s) in the direction of interest. The bedload velocity
and thickness can be calculated from Rijn (1984) using formulations as follows

ub= 1.5T 0.6[(ρs−1)gd]0.5 (6.149)

hb=3dd0.6
∗ T

0.9
(6.150)

The transport parameter T, is calculated as

T=
τb−τce

τce
(6.151)

The flux of sediments between the bottom sediments and bedload Qb, is calculated as
the erosion of sediments into bedload Eb, minus the deposition of sediments from bedload
Db, and is

Qb=Eb−Db (6.152)

where Db is given by,

Db=PwsCb (6.153)

In steady state equilibrium, the concentration of sediments in bedload, Ce, is due to a
dynamic equilibrium between erosion and deposition, i.e.,

Eb=PwsCe (6.154)

From this, the probability of deposition can be written as

P=
Eb

wsCe
(6.155)

The erosion rate can be determined from SEDFlume, while the settling speed can be
calculated from equation (6.133). The equilibrium concentration Ce, has been investigated
by several authors; the formulation by Rijn (1984) will be used here and is calculated as
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Ce= 0.117
ρsT
d∗

(6.156)

Once Eb, ws, and Ce are known as a function of particle diameter and shear stress, P can
be calculated from equation (6.155). It is then assumed that this probability is also valid
for the non-steady case so that the deposition rate can be calculated in this case also.

The equilibrium concentration Ce, is based on experiments with uniform sediments. In
general, the sediment bed contains and must be represented by more than one size class.
In this case; the erosion rate for a particular size class is given by f jEb, it follows that the
probability of deposition for size class j is then given by

Pj=
f jEb

ws j f jCe j
=

Eb

ws jCe j
(6.157)

In equation (6.157), it is implicitly assumed that there is a dynamic equilibrium between
erosion and deposition for each size class j.

6.4.3.5 Bed Armoring

A decrease in sediment erosion rates with time, or bed armoring, can occur due to (1)
the consolidation of cohesive sediments with depth and time, (2) the deposition of coarser
sediments on the sediment bed during a flow event, and (3) the erosion of finer sediments
from the surficial sediment, leaving coarser sediments behind, again during a flow event.
The consolidation of sediments and subsequent change in erosion rates with of depth can
be determined by SEDFlume in situ measurements. The consolidation of sediment and
increase of erosion rates with time can be determined approximately from consolidation
studies, again by means of SEDFlume.

Here we are concerned about bed armoring due to processes (2) and (3). In order to
describe these processes, it is assumed in the present model that a thin mixing layer, or
active layer, is formed at the surface of the bed. The existence and properties of this have
been discussed by previous researchers (Parker et al., 2000; van Niekerk et al., 1992). The
presence of this active layer permits the interaction of depositing and eroding sediments
to occur in a discrete layer without allowing deposited sediments to affect the undisturbed
sediments below. The authors in van Niekerk et al. (1992) have suggested that the thickness
Ta, can be approximated by

Ta= 2d50
τb

τce
(6.158)

This formulation takes into account the deeper penetration of turbulence into the bed
with increasing shear stress. In the present calculations, d50 is approximated by the average
diameter in the interest of computational efficiency.

Since the active layer is kept at a constant thickness Ta, three possible states of the active
layer must be considered. The first state is a net erosion of the active layer, where there may
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Fig. 6.7. Diagram of SEDflume layering system.

be deposition occurring but the net flux is erosional. If the thickness of the active layer after
this net erosion is T, then a thickness of material equal to Ta−T is added to the active layer
so that a thickness of Ta can be maintained. This material is added from the layer below in
size class proportions equivalent to that in the layer below. The second possible state of the
active layer is a net depositional state where the thickness of the active layer exceeds Ta. In
this case, the excess material T −Ta, is put into a new deposited material layer just below
the active layer, but above the parent bed. This material is added to the deposited layer in
size class proportions equal to the active layer. The third state of the active layer is where
T is equal in thickness to Ta. In this case, no action is taken. Figure 6.7 shows a diagram of
the layering system.

The erosion rates for this active layer are dependent on its average particle size. Figure
6.8 shows the erosion rate vs. particle diameter for quartz sediment. It is seen that as the
particle diameter increases beyond 200 µm, the erosion rate decreases. This demonstrates
how bed coarsening affects erosion rates. A dataset of this type can be constructed utilizing
laboratory and field cores to determine erosion rates as a function of particle size for any
particular site. The erosion rate for an active or deposited layer can then be calculated from
the average particle size of the layer with an interpolation similar to equation (6.127) with
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particle size in place of thickness.

Fig. 6.8. Erosion rates versus particle size and shear stress for a bulk density of 1.9 g/cm2, adapted
from Roberts et al. (1998) by James et al. (2010). Model uses interpolated data to estimate erosion
rates at 1 Pa.
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Chapter 7

TOXIC CONTAMINANT
TRANSPORT AND FATE MODULE

7.1. Introduction

This chapter presents processes associated with toxics and their mathematical model-
ing. It starts with the basic equations and their numerical aspects then follows by character-
istics of toxic organic chemicals and metals, and the absorption and deabsorption processes.

7.2. Basic Equations

The transport of an absorptive contaminant in the water column is governed by transport
equations for the contaminant dissolved in the water phase, for the contaminant absorbed
to material effectively dissolved in the water phase, and for the contaminant absorbed to
suspended particles. For the portion of the contaminant dissolved directly in the water
phase

∂

∂ t
(mHCw)+

∂

∂x
(myHuCw)+

∂

∂y
(mxHvCw)+

∂

∂ z
(mwCw) =

∂

∂ z

(
m

Ab

H
∂zCw

)
+mH

(
∑

i

(
Ki

dSSi
∂

i
S
)
+∑

j

(
K j

dDD j
∂

j
D

))
−

mH ∑
i

(
Ki

aSSi)(
∂w

Cw

∂

)(
∂̂

i
S−∂

i
S

)
−

mH ∑
j

(
K j

aDD j
)(

∂w
Cw

∂

)(
∂̂

j
D−∂

j
D

)
+SE

C +SI
C (7.1)

where,
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Cw is the mass of water dissolved contaminant per unit total volume (µg/l),

Si is the mass of sediment class i (g/m3),

D j is the mass of the dissolved substance (i.e. DOC) (g/m3),

χS is the mass of contaminant absorbed to sediment class i per mass of sediment
(mg/g),

χD is the mass of contaminant absorbed to dissolved material j per unit mass of dis-
solved material (i.e. absorbed to DOC) (mg/g),

φ is the porosity (dimensionless),

ψw is the fraction of the water dissolved contaminant available for absorption (dimen-
sionless),

Ka is the absorption rate of sediment (S) or dissolved material (D) (/s),

Kd is the deabsorption rate (/s),

SE
C is the external source/sink of the contaminant (mg/s), and

SI
C is the internal source/sink of the contaminant (mg/s) due to degradation,

volatilization and conversions to/from other contaminants (mg/s).

7.2.1 Contaminant Partitioning

The absorption kinetics are based on the Langmuir isotherm (Chapra et al., 1997) with
χ̂ denoting the saturation absorbed mass per carrier mass. The sediment and dissolved
material concentrations S and D are defined as mass per unit total volume.

Introducing absorbed concentrations defining absorbed mass per unit total volume

C j
D = D j

χ
j

D (7.2)

Ci
S = Si

χ
i
S (7.3)

The EFDC+ absorbed contaminant transport formulation currently employees equilib-
rium partitioning with the absorption and deabsorption terms(

K j
sDD j

)(
ψw

Cw

φ

)(
χ̂

j
D−χ

j
D

)
= K j

dDC j
D (7.4)

(
Ki

aSSi)(
ψw

Cw

φ

)(
χ̂

i
S−χ

i
S
)
= Ki

dSCi
S (7.5)

Solving equations (7.4) and (7.5) for the absorbed to water phase concentration ratios gives

C j
D

Cw
=

f j
D

fw
= P j

D
D j

φ
P j

D = P j
Do

(
1+P j

Do

(
Cw

χ̂
j

Dφ

))−1

P j
Do =

ψwK j
aDχ̂

j
D

K j
dD

(7.6)
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Ci
S

Cw
=

f i
S

fw
= Pi

S
Si

φ
Pi

S = Pi
So

(
1+Pi

So

(
Cw

χ̂ i
Sφ

))−1

Pi
So =

ψwKi
aSχ̂ i

S

Ki
dS

(7.7)

where, P denotes the partition coefficient, and Po is its linear equilibrium value. For linear
equilibrium partitioning, P is set to Po, which in effect approximates

(
1+Pi

So

(
Cw

χ̂ i
Sφ

))−1

terms in equations (7.6) and (7.7) as unity. Requiring the mass fractions to sum to unity

fw +∑
i

f i
S +∑

j
f j
D = 1 (7.8)

gives

fw =
Cw

C

=
φ

φ +∑i Pi
SSi +∑ j P j

DD j
f j
D

=
C j

D
C

=
P j

DD j

φ +∑i Pi
SSi +∑ j P j

DD j
f i
S

=
Ci

S
C

=
Pi

SSi

φ +∑i Pi
SSi +∑ j P j

DD j

(7.9)

The dissolved concentrations can be alternately expressed by mass per unit volume of
the water phase

Cw:w =
Cw

φ
C j

D:w =
C j

D
φ

DJ
:w =

D j

φ
(7.10)

with equation (7.9) becoming
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Cw:w

C
=

1

φ +∑i Pi
SSi +∑ j P j

DφD j
:w

C j
D:w
C

=
P j

DD j
:w

φ +∑i Pi
SSi +∑ j P j

DφD j
:w

Ci
S

C
=

Pi
SSi

φ +∑i Pi
SSi +∑ j P j

DφD j
:w

(7.11)

which is a generalization of the Chapra et al. (1997) formulation for absorption to dissolved
and particulate organic carbon.

7.2.2 Water Column Transport

The partitioning relationships shown in equation (7.2) and equation (7.3) allows equa-
tion (7.1) to be expanded into the transport equation for each contaminant fractions
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(7.12)
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(7.14)
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Where, equation (7.12) is for the dissolved fraction, equation (7.13) is for the fraction
absorbed to the dissolved material and equation (7.14) is for the fraction absorbed to the
sediments.

The transport equation for the portion of material absorbed to a dissolved constituent
D is,
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(7.15)

The transport equation for the portion of material absorbed to a suspended constituent
S is,
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(7.16)

Adding equations (7.12), (7.13), and (7.14), using the equilibrium partitioning relation-
ship equations (7.4) and (7.5) gives
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1
mxmy

∂

∂x
(myHuC)+

1
mxmy

∂

∂y
(mxvC)+

∂

∂ z
(mxmywC)−

∂

∂ z

(
mxmy ∑

i
wi

S f i
SC

)
=

∂

∂ z

(
mxmy
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H
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the equation for the total concentration C. The boundary condition at the water column-
sediment bed interface, z = 0 is
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(7.18)

where,

JSBS and JSBB are the suspended load and bedload sediment fluxes between the sediment
bed and the water column, defined as positive from the bed,

ρ2 is the sediment density in g/cm3,

qw is the water specific discharge due to bed consolidation and groundwater interac-
tion, defined as positive from the bed, and

qdi f is a diffusion velocity incorporating the effects of molecular diffusion, hydrody-
namic dispersion, and biological induced mixing.

The subscript SB denotes conditions in the top layer of the sediment bed, while the
subscript WC denotes condition in the water column immediately above the bed, with the
exception that the specific discharge and diffusion velocity are defined at the water column-
bed interface. The subscript dep is used to denote the void ratio and porosity of newly
depositing sediment. Equation (7.11) indicates that the contaminant flux between the bed
and water column includes a flux of suspended sediment absorbed material; fluxes of water
dissolved and absorbed to water dissolved material due to the specific discharge of water
associated with consolidation and ground water interaction and water entrainment and ex-
pulsion associated with both suspended and bedload sediment deposition and resuspension;
and a flux of water dissolved and absorbed to water dissolved material due to diffusion like
processes. Transport of bedload sediment absorbed material is represented by direct trans-
port between horizontally adjacent top bed layers and is included in the contaminant mass
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conservation equations for the sediment bed. The boundary condition at the water free
surface is

− Ab

H
∂C
∂ z
−∑

i
wi

S f i
SC = 0 : z = 1 (7.19)

Using the relationship between the porosity and void ratio

φ =
ε

1+ ε
(7.20)

and equation (7.3) allows equation (7.18) to be written as
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(7.21)

The sediment concentration can be expressed in terms of the sediment density and void
ratio by

Si =
F iρ i

s
1+ ε

(7.22)

where Fi is the fraction of the total sediment volume occupied by each sediment class

F i =

(
∑

i

(
Si

ρ i
s

))−1(
Si

ρ i
s

)
(7.23)

Introducing equations (7.9) and (7.22) into equation (7.21) gives the final form of the
bottom boundary
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(7.24)

Note that the form of the bed flux associated with bedload transport remains unmodified
since the sediment concentration in the water column cannot be readily defined for sediment
being transported as bedload.

The transport equation (7.17) for the total contaminant concentration in the water col-
umn is solved using a fractional step procedure which sequentially treats advection; set-
tling, deposition, and resuspension; pore water advection and diffusion; and reactions.
The fractional phase distribution of the contaminant is recalculated between the advec-
tion, settling, deposition and resuspension, and pore water advection and diffusion steps
using equation (7.9). The advection step is

(HC)n+1/4− (HC)n +
θ

mxmy

∂

∂x
(myHuC)+

θ

mxmy

∂

∂y
(mxHvC)+θ

∂ (wC)

∂ z
= 0 (7.25)

with the vertical boundary conditions

wC = 0 : z = 0, 1 (7.26)

The fractional time level in equation (7.25) and subsequent equations is used to denote
an intermediate result in the fractional step procedure. The spatially discrete form of equa-
tion (7.25) is solved using one of the standard high order, flux limited, advective transport
solvers in the EFDC+ model.
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7.2.3 Settling, Deposition, and Resuspension

The settling, deposition, and resuspension step is
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∂
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(7.27)

with the boundary conditions
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: z = 0 (7.28)

wi
S f i

SC = 0 : z = 1 (7.29)

Integrating equation (7.27) over a water column layer and using upwind differencing
for the settling gives,
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for a layer not adjacent to the bed, and,
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for the first layer adjacent to the bed. Note that equation (7.31) is also the appropriate form
for single layer or depth average application. Since the sediment settling flux is zero at the
top of the free surface adjacent layer, equation (7.27) is integrated downward from the top
layer to the bottom layer. The bottom layer equation (7.31) is solved simultaneously with a
corresponding equation for the top layer of the sediment bed. The settling fluxes wSS, and
water column-sediment bed fluxes JSB, in equations (7.30) and (7.31) are known from the
preceding solution for sediment settling, deposition and resuspension. Terms containing
the sediment absorbed fraction divided by the sediment concentration in equations (7.30)
and (7.31)

f i
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S
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(7.32)

The diffusion step is given by
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(7.33)

with boundary conditions
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For the first layer adjacent to the bed
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It is noted that the bed concentrations are advanced to the n+3/4 intermediate time
level before the advance of the water column concentrations. While for layers not adjacent
to the bed,
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(7.37)

The solution is completed by

(HC)n+1
k − (H)

n+3/4
k =−θγ(HC)n+1

k (7.38)

an implicit reaction step.

7.2.4 Toxic Bed Processes

Contaminant transport in the sediment bed is represented using the discrete layer for-
mulation developed for bed geomechanical processes. The conservation of mass for the
total contaminant concentration in a layer of the sediment bed is given by
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where,

δ (k,kt) =
{

0 : k = kt1 : k 6= kt (7.40)

is used to distinguish processes specific to the top, water column adjacent layer of the bed,
kt. Advective fluxes associated with pore water advection in equation (7.40) are represented
in upwind form. In the sediment bed, the actual computational variables for sediment,
contaminant, and dissolved material are their concentrations times the thickness of the bed
layer. Consistent with this formulation, the fractional phase components in the bed are
defined by
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7.2.4.0.1 Bedload Transport

The contaminant fluxes associated bedload sediment transport are determined as fol-
lows.
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(7.42)

is used to evaluate the flux associated with pore water entrainment and expulsion in equa-
tions (7.25) and (7.40). The transport equation for material absorbed to the bedload is
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Since the contaminant mass per sediment mass in the transport divergence corresponds
to conditions in the top layer of the sediment bed, equation (7.43) can be written as
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and solved using an upwind approximation
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to evaluate the transport of bedload absorbed material between horizontally adjacent top
layers of the sediment bed.
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7.2.4.1 Settling, Depostion and Resuspension

Equation (7.39) is solved using a fractional step procedure consistent with that used for
the water column transport. Equation (7.41) is used to update the fractional distribution in
the bed between the settling, deposition, and resuspension step and the pore water advection
and diffusion step. The settling, deposition, and resuspension step applies only to the top
layer of the bed and is
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This equation is solved simultaneously with equation (7.31) for the bottom layer of the
water column. The solution is represented by
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where the coefficients are given by
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Adding the two equations in (7.46) gives
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This equation verifies the consistency of the water column-sediment bed exchange since
the source and sinks on the right side include only settling into the top of the water column
layer, and transfer of bedload sediment absorbed contaminant between horizontal sediment
bed cells.

7.2.4.2 Porewater Advection and Diffusion

The pore water advection and diffusion step for the top, water column adjacent, layer is
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which is an implicit form. Writing equation (7.36) in the form
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and combining with equation (7.52) gives
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This equation verifies the consistency of the representation of pore water advection and
diffusion across water column-sediment bed interface since the source and sink terms on
the right side of equation (7.55) represent fluxes at the top to the water column cell and the
bottom of the bed cell.

129 EFDC+ Theory Document



7. TOXIC CONTAMINANT TRANSPORT AND FATE MODULE

The pore water diffusion and advection step for the remaining bed layers is given by
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For the bottom layer of the bed k = 1, the bottom k0, specific discharge and diffusion
velocity must be specified as well as the total contaminant concentration, C0. The corre-
sponding thickness of the unresolved layer, k = 0, is set to unity without loss of generality.
The system of equations represented by equations (7.52) and (7.55) is implicit and is solved
using a tri-diagonal linear equation solver. It is noted that the n+3/4 time level layer thick-
ness is actually the n+1 time level thickness determined by the solution of equation (7.23).
The specific discharges in equations (7.52) and (7.55) are given by equation (7.41) and rep-
resent those appearing in equation (7.23) and guarantee mass conservation for the pore
water advection.

The bed transport solution is completed by

(BC)n+1
k − (BC)

n+3/4
k =−θγ(BC)n+1

k (7.57)

an implicit reaction step.

7.3. Toxic Contaminant Loss Terms

7.3.1 Bulk Degradation

Bulk degradation can be included in the water column and/or the sediment bed for any
toxic constituent. The bulk degradation in the water column follows a first order decay rate

dCk

dt
=−KCk (7.58)

where,

C is the toxic concentration in mg/m3 in layer k,
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K is the first order decay rate in 1/s, and

t is time in seconds.

For bulk degradation there is no temperature effects on the degradation rate.
In the sediment bed, bulk degradation can be applied for sediment thickness up to a

maximum sediment depth

dCb,k

dt
=−KCb,k, for

kt

∑
k

Hbed,k = Dmax (7.59)

where,

Cb,k is the sediment bed toxic contaminant concentration in layer k (mg/g),

K is the bulk decay rate (1/s),

Hbed,k is the sediment bed layer thickness (m), and

Dmax is the maximum depth to use bulk degradation (m).

7.3.2 Biodegradation

Bacterial degradation, sometimes referred to as microbial transformation, biodegra-
dation or biolysis, is the breakdown of a compound by the enzyme systems in bacteria.
Although these transformations can detoxify and mineralize toxins and defuse potential
toxins, they can also activate potential toxins.

Biodegradation in EFDC+ follows the bulk degradation approach shown previously

dCk

dt
=−Kw,bioCk (7.60)

and

dCb,k

dt
=−Kb,bioCb,k, for

kt

∑
k

Hbed,k = Dbio (7.61)

where,

Ck is the toxic concentration in the water column in layer k (mg/m3),

Cb,k is the sediment bed toxic contaminant concentration in layer k (mg/g),

Kw,bio is the water column biodegradation rate (1/s),

Kb,bio is the sediment bed biodegradation rate (1/s),

Hbed,k is the sediment bed layer thickness (m), and

Dbio is the maximum depth to apply biodegradation (m).
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And where the degradation coefficient be temperature dependent according to

Kbio = Kbio,re f Q(T−20)/10
10 (7.62)

where,

Kbio,re f is respective reference biodegradation rate at 20 ◦C (1/s),

Q10 is the temperature correction factor for biodegradation, and

T is the relevant current temperature (◦C).

The temperature correction factors represent the increase in the biodegradation rate
constants resulting from a 10 ◦C temperature increase. Values in the range of 1.5 to 2.0 are
common.

7.3.3 Volatilization

Volatilization is the movement of chemical across the air-water interface as the dis-
solved neutral concentration attempts to equilibrate with the gas phase concentration. Equi-
librium occurs when the partial pressure exerted by the chemical in solution equals the
partial pressure of the chemical in the overlying atmosphere. The rate of exchange is
proportional to the gradient between the dissolved concentration and the concentration in
the overlying atmosphere and the conductivity across the interface of the two fluids. The
conductivity is influenced by both chemical properties (molecular weight, Henry’s Law
constant) and environmental conditions at the air-water interface (turbulence-controlled by
wind speed, current velocity, and water depth).

In EFDC+, volatilization of a dissolved toxic constituent is computed by

∂C
∂ t

∣∣∣∣
volat

=
Kv

HKC

(
fdC− Ca

HL
RTK

)
(7.63)

where,

C is the water column concentration in layer,

KC is the top layer number (dimensionless),

Kv is the transfer rate (m/day),

Hkc is the water column thickness of the layer KC (m),

fd is the fraction of the total chemical that is dissolved,

Ca is the atmospheric concentration (mg/m3),

R is the universal gas constant 8.206×10−5atm−m3/mole−K,

TK is the water temperature in Kelvin (◦K), and
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HL is the Henry’s law coefficient for the air-water partitioning of the toxic (atm−
m3/mole).

Equilibrium occurs when the dissolved concentration equals the partial pressure divided
by the Henry’s Law Constant.

The dissolved concentration of a chemical in a surface water column segment can
volatilize at a rate determined by the two-layer resistance model Whitman et al. (1923).
The two-resistance method assumes that two “stagnant films” are bounded on either side
by well mixed compartments. Concentration differences serve as the driving force for the
water layer diffusion. Pressure differences drive the diffusion for the air layer. From mass
balance considerations, it is obvious that the same mass must pass through both films, thus
the two resistances combine in series, so that the conductivity is the reciprocal of the total
resistance:

Kv = (RL +RG)
−1 =

[
K−1

L +

(
KG

HL

RTK

)−1
]−1

(7.64)

where,

RL is the liquid phase resistance (day/m),

KL is the liquid phase transfer coefficient (m/day),

RG is the gas phase resistance (day/m), and

KG is the gas phase transfer coefficient (m/day).

There is yet another resistance involved, the transport resistance between the two inter-
faces, but it is assumed to be negligible. This may not be true in two cases: very turbulent
conditions and in the presence of surface-active contaminants. Although this two-resistance
method, the Whitman model, is rather simplified in its assumption of uniform layers, it has
been shown to be as accurate as more complex models.

The value of Kv, the conductivity, depends on the intensity of turbulence in a water
body and in the overlying atmosphere. Leinonen and Mackay (1975) have discussed con-
ditions under which the value of Kv is primarily determined by the intensity of turbulence in
the water. As the Henry’s Law coefficient increases, the conductivity tends to be increas-
ingly influenced by the intensity of turbulence in water. As the Henry’s Law coefficient
decreases, the value of the conductivity tends to be increasingly influenced by the intensity
of atmospheric turbulence.

The computed volatilization rate from equation (7.64) is for a temperature of 20◦C. It
is adjusted for water temperature using the equation:

Kv,T = KvT T−20 (7.65)

where,

Θ is the temperature correction factor, and
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T is the water temperature (
◦
C).

The liquid and gas film transfer coefficients computed under this option vary with the
type of waterbody. The type of waterbody is specified as one of the volatilization constants
and can either be a flowing stream, river or estuary or a stagnant pond or lake. The primary
difference is that in a flowing waterbody the turbulence is primarily a function of the stream
velocity, while for stagnant waterbodies wind shear may dominate. The formulations used
to compute the transfer coefficients vary with the waterbody type as shown below.

EFDC+ automatically determines which flow regime to apply based on the following
criteria {

H > Hmax, Lake conditions
H = Hmax, River conditions

}
(7.66)

or {
U =Umax, Lake conditions
U >Umax, River conditions

}
(7.67)

where,

H is total depth (m),

Hmax is maximum depth allowed for river conditions (m),

U is the depth averaged velocity magnitude (m/s), and

Umax is the maximum lake velocity magnitude (m/s).

7.3.3.1 Flowing Stream, River or Estuary

For a flowing system the transfer coefficients are controlled by flow induced turbulence.
For flowing conditions, the liquid film transfer coefficient (KL) is computed using the Covar
method (Covar, 1976) in which the equation used varies with the velocity and depth of the
cell.

For cells with depths less than 0.61 m, the Owens formula is used to calculate the
oxygen reaeration rate (7.68).

KL =
5.349
86400

U0.67

H1.5 (7.68)

where,

U is the depth averaged water velocity magnitude (m/s), and

H is cell depth (m).
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For segments with a velocity less than 0.518 m/s or a depth (m) greater than
13.584U2.9135 the O’Connor-Dobbins formula is used:

KL = Dw
U0.5

H1.5 (7.69)

where, Dw is the diffusivity of the chemical in water (m2/s), computed from

Dw =
22 ·10−9

M0.6667
w

(7.70)

In all other cases, the Churchill formula is used to calculate reaeration rate:

KL =
5.049
86400

U0.969

H1.673 (7.71)

The gas transfer coefficient (KG) is assumed constant at 100 m/day for flowing systems.

7.3.3.2 Lake or Pond

For more quiescent conditions, the transfer coefficients are controlled by wind induced
turbulence. For these systems, the liquid film transfer coefficient (KL) is computed using
either the O’Connor equations or Mackay and Yeun (1983).

7.3.3.2.1 Option 1 O’Connor Approach

KL = u∗

(
∂a

∂w

)0.5
∂ 0.33

∂2
S−0.67

cw (7.72)

KG = u∗
∂ 0.33

∂2
S−0.67

ca (7.73)

where, u∗ is the shear velocity (m/s) computed from

u∗ =C0.5
d W10 (7.74)

where,

Cd is the drag coefficient (0.0011),

W10 is wind velocity at 10 m above the water surface (m/s),

ρa is density of air, internally calculated from air temperature (kg/m3),

ρw is density of water, internally calculated from water temperature (kg/m3),

κ is von Karman’s constant,

λ2 is dimensionless viscous sublayer thickness, and
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Sca and Scw are air and water Schmidt Numbers, computed from

Sca =
µa

∂aDa
(7.75)

Scw =
µw

∂wDw
(7.76)

where,

Da is diffusivity of chemical in air (m2/s),

Dw is diffusivity of chemical in water (m2/s),

µa is viscosity of air, internally calculated from air temperature (kg/m− sec), and

µw is viscosity of water, internally calculated from water temperature (kg/m− sec).

The diffusivity of the chemical in water is computed using equation (7.70) while the
diffusivity of the chemical in air (Da, m2/sec) is computed from

Da =
1.9 ·10−4

M2/3
w

(7.77)

This KG is proportional to wind and inversely proportional to molecular weight to the
4/9 power.

7.3.3.2.2 Option 2 Mackay and Yeun Approach

Under this option, the liquid and gas film transfer coefficients are computed using for-
mulations described by Mackay and Yeun (1983). The Mackay equations are:

KL =

{
10−6 +0.00341u∗S−0.5

cw , u∗ > 0.3m/s
10−6 +0.01441u2.2

∗ S−0.5
cw , u∗ < 0.3m/s

(7.78)

KG = 10−3 +0.0462u∗S−0.67
ca (7.79)

7.3.3.2.3 Volatilization Input Data

Although there are many calculations involved in determining volatilization, most are
performed internally using a small set of data. Volatilization data specifications are sum-
marized in Table 7.1 Not all of the constants are required. Volatilization is only active for
the surface layer.
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Table 7.1. Volatilization Input Data

Description Notation Range Units

Measured or calibrated
conductance

Kv 0.6 — 25 m/day

Henry’s Law Constant H 10−7 — 10−1 atm−m3/mole

Concentration of chemical in
atmosphere

Ca 0 — 1000 µg/L

Molecular weight Mw 10 — 103 g/mole

Reaeration coefficient
(conductance of oxygen)

Ka 0.6 — 25 m/day

Experimentally measured
ratio of volatilization to
reaeration

kvo 0 — 1

Current velocity ux 0.2 m/s

Water depth D 0.1 — 10 m

Water temperature T 4 — 30 ◦C

Wind speed 10m above
surface

W10 0 — 20 m/s
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Chapter 8

EUTROPHICATION MODULE

8.1. Introduction

This section summarizes the basic theory of the water quality-eutrophication module of
the EFDC+ model.The kinetic processes included in the EFDC+ water quality module are
derived from the CE-QUAL-ICM water quality model (Cerco and Cole, 1995) as described
in Park et al. (1995). This document describes the current module formulation including
comparisons with subsequent published documentation of CE-QUAL-ICM model appli-
cations. Table 8.1 lists the model’s complete set of state variables, and their interactions
are illustrated in Figure 8.1. As opposed to earlier water quality models such as WASP
(Ambrose et al., 1993), which use biochemical oxygen demand (BOD) to represent oxy-
gen demanding organic material, the EFDC+ eutrophication module is carbon based. The
four algal species are represented in carbon units. The three organic carbon variables play
an equivalent role to BOD. Organic carbon, nitrogen and phosphorous can be represented
by up to three reactive sub-classes, refractory particulate, labile particulate and labile dis-
solved. The use of sub-classes allows a more realistic distribution of organic material by
reactive classes when data are to estimate distribution factors. The following sub-sections
discuss the role of each variable and summarize their kinetic interaction processes. The
kinetic processes include the exchange of fluxes at the sediment-water interface, including
sediment oxygen demand (SOD). The description of the EFDC+ eutrophication module in
this section closely follows Park et al. (1995).

8.2. Water Column Eutrophication Formulation

8.2.1 Model State Variables

8.2.1.1 Algae

Algae are grouped into four model classes: cyanobacteria, diatoms, greens, and sta-
tionary. The grouping is based upon the distinctive characteristics of each class and upon
the significant role the characteristics play in the ecosystem. Cyanobacteria, commonly
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Table 8.1. EFDC+ model water quality state variables

# Water quality state variable Acronyms Units Group

1 Cyanobacteria Bc mg/l C Algae

2 Diatom algae Bd mg/l C

3 Green algae Bg mg/l C

4 Refractory particulate
organic carbon

RPOC mg/l Organic carbon

5 Labile particulate
organic carbon

LPOC mg/l

6 Dissolved organic carbon DOC mg/l

7 Refractory particulate
organic phosphorus

RPOP mg/l Phosphorus

8 Labile particulate
organic phosphorus

LPOP mg/l

9 Dissolved organic phosphorus DOP mg/l

10 Total phosphate PO4 mg/l

11 Refractory particulate
organic nitrogen

RPON mg/l Nitrogen

12 Labile particulate
organic nitrogen

LPON mg/l

13 Dissolved organic nitrogen DON mg/l

14 Ammonia nitrogen NH4 mg/l

15 Nitrate and nitrite nitrogen NO3, NO2, NOX mg/l

16 Particulate biogenic silica SU mg/l Silica

17 Dissolved available silica SA mg/l

18 Chemical oxygen demand COD mg/l Others

19 Dissolved oxygen DO mg/l

20 Total active metal TAM mole/m3

21 Fecal coliform bacteria FCB MPN/100ml

22 Macroalgae/Periphyton Bm mg/l C
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Fig. 8.1. Schematic diagram of EFDC+ Water Quality Model Structure.

called blue-green algae, are characterized by their abundance (as picoplankton) in saline
water and by their bloom-forming characteristics in fresh water. Cyanobacteria are unique
in that some species fix atmospheric nitrogen, although nitrogen fixers are not believed to
be predominant in many river systems. Diatoms are distinguished by their requirement
of silica as a nutrient to form cell walls. Diatoms are large algae, characterized by high
settling velocities. Settling of spring diatom blooms to the sediments may be a significant
source of carbon for sediment oxygen demand. Algae that do not fall into the preceding
two groups are lumped into the heading of green algae. Green algae settle at a rate interme-
diate between cyanobacteria and diatoms, and are subject to greater grazing pressure than
cyanobacteria.

A stationary or non-transported algae (constituent 22) variable is included in the model
and has been used to simulate macroalgae/periphyton. The stationary algae variable has
the same kinetic formulation as the original algae groups, with the exception that it is not
transported. The stationary algae group can also be used to represent various types of bot-
tom substrate attached or floating periphyton. It is also noted that, in applications requiring
simulation of multiple classes of stationary algae, one or more of the three transported al-
gae groups can be switched to stationary model, under the restriction that the total number
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of transport and stationary algae classes remains less than or equal to four. Appendix A
provides additional specifics with respect to model configuration simulation of macroalgae
and periphyton.

8.2.1.2 Organic Carbon

Three organic carbon state variables are considered: dissolved, labile particulate, and
refractory particulate. Labile and refractory distinctions are based upon the time scale
of decomposition. Labile organic carbon decomposes on a time scale of days to weeks
whereas refractory organic carbon requires more time. Labile organic carbon decomposes
rapidly in the water column or the sediments. Refractory organic carbon decomposes
slowly, primarily in the sediments, and may contribute to sediment oxygen demand years
after deposition.

8.2.1.3 Nitrogen

Nitrogen is first divided into organic and mineral fractions. Organic nitrogen state vari-
ables are dissolved organic nitrogen, labile particulate organic nitrogen, and refractory par-
ticulate organic nitrogen. Two mineral nitrogen forms are considered: ammonium and
nitrate. Both are utilized to satisfy algal nutrient requirements, although ammonium is pre-
ferred from thermodynamic considerations. The primary reason for distinguishing the two
is that ammonium is oxidized by nitrifying bacteria into nitrate. This oxidation can be a
significant sink of oxygen in the water column and sediments. An intermediate in the com-
plete oxidation of ammonium, nitrite, also exists. Nitrite concentrations are usually much
less than nitrate, and for modeling purposes, nitrite is combined with nitrate. Hence, the
nitrate state variable actually represents the sum of nitrate plus nitrite.

8.2.1.4 Phosphorus

As with carbon and nitrogen, organic phosphorus is considered in three states: dis-
solved, labile particulate, and refractory particulate. Only a single mineral form, total phos-
phate, is considered. Total phosphate exists as several states within the model ecosystem:
dissolved phosphate, phosphate sorbed to inorganic solids, and phosphate incorporated in
algal cells. Equilibrium partition coefficients are used to distribute the total among the three
states.

8.2.1.5 Silica

Silica is divided into two state variables: available silica and particulate biogenic silica.
Available silica is primarily dissolved and can be utilized by diatoms. Particulate biogenic
silica cannot be utilized. In the model, particulate biogenic silica is produced through
diatom mortality. Particulate biogenic silica undergoes dissolution to available silica or
else settles to the bottom sediments.
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8.2.1.6 Chemical Oxygen Demand

In the context of this study, chemical oxygen demand is the concentration of reduced
substances that are oxidizable by inorganic means. The primary component of chemical
oxygen demand is sulfide released from sediments. Oxidation of sulfide to sulfate may
remove substantial quantities of dissolved oxygen from the water column.

8.2.1.7 Dissolved Oxygen

Dissolved oxygen is required for the existence of higher life forms. Oxygen availabil-
ity determines the distribution of organisms and the flows of energy and nutrients in an
ecosystem. Dissolved oxygen is a central component of the water quality model.

8.2.1.8 Total Active Metal

Both phosphate and dissolved silica adsorb to inorganic solids, primarily iron and man-
ganese. Sorption and subsequent settling is one pathway for removal of phosphate and
silica from the water column. Consequently, the concentration and transport of iron and
manganese are represented in the model. However, limited data do not allow a complete
treatment of iron and manganese chemistry. Rather, a single-state variable, total active
metal, is defined as the total concentration of metals that are active in phosphate and silica
transport. Total active metal is partitioned between particulate and dissolved phases by an
oxygen-dependent partition coefficient. Inorganic suspended solids can be used, in lieu of
total active metal, as a sorption sited for phosphate and silica. Inorganic suspended solids
concentration is provided by the sediment transport component of the EFDC+ modeling
system.

8.2.1.9 Salinity

Salinity is a conservative tracer that provides verification of the transport component
of the model and facilitates examination of conservation of mass. Salinity also influences
the dissolved oxygen saturation concentration and is used in the determination of kinetics
constants that differ in saline and fresh water. Salinity is simulated in the hydrodynamic
component of the model.

8.2.1.10 Temperature

Temperature is a primary determinant of the rate of biochemical reactions. Reaction
rates increase as a function of temperature, although extreme temperatures result in the
mortality of organisms. Temperature is simulated in the hydrodynamic component of the
model.
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8.2.2 Conservation of Mass Equation

The governing mass-balance equation for each of the water quality state variables may
be expressed as:

∂

∂ t
(mxmyHC)+

∂

∂x
(myHuC)+

∂

∂y
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∂

∂ z
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(
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∂C
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)
+

∂
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(
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my

∂C
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)
+

∂

∂ z
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H
∂C
∂ z

)
+mxmyHSc (8.1)

The last three terms on the left-hand side (LHS) of equation (8.1) account for the ad-
vective transport, and the first three terms on the right-hand side (RHS) account for the
diffusive transport. These six terms for physical transport are analogous to, and thus the
numerical method of solution is the same as, those in the mass-balance equation for salin-
ity in the hydrodynamic model (Hamrick, 1992). The last term in equation (8.1) represents
the kinetic processes and external loads for each of the state variables. The present model
solves equation (8.1) using a fractional step procedure which decouples the kinetic terms
from the physical transport terms.
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∂C
∂ tK

= SCK (8.3)

with

∂

∂ t
(mxmyHC) =

∂

∂ tp
(mxmyHC)+(mxmyH)

∂C
∂ tK

(8.4)

In equation (8.2) the source sink term has been split into physical sources and sinks
which are associated in volumetric inflows and outflows, and kinetic sources and sinks.
Since variations in the water column depth are coupled with the divergence of the volume
transport field, the kinetic step is made at a constant water column depth corresponding to
the depth field at the end for the physical transport step. This allows the depth and scale
factors to be eliminated from the kinetic step in equation (8.3) which can be further split
into reactive and internal sources and sinks.

∂CK

∂ t
= KC+R (8.5)
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Where K is kinetic rate (time−1) and R represents internal source/sink term
(mass volume−1time−1). Equation (8.5) is obtained by linearizing some terms in the ki-
netic equations, mostly Monod type expressions. Hence, K and R are known values in
equation (8.5). Equation (8.2) is identical to, and thus its numerical method of solution is
the same as, the mass-balance equation for salinity (Hamrick, 1992). The solution scheme
for both the physical transport (Hamrick, 1992) and the kinetic equations is second-order
accurate.

8.2.3 Kinetic Equations for State Variables

The remainder of this chapter details the kinetics portion of the mass-conservation equa-
tion for each state variable. Parameters are defined where they first appear. All parameters
are listed, in alphabetical order, in an appendix. For consistency with reported rate coef-
ficients, kinetics are detailed using a temporal dimension of days. Within the CE-QUAL-
ICM computer code, kinetics sources and sinks are converted to a dimension of seconds
before they are used in the mass-conservation equation.

8.2.3.1 Algae

Algae, which occupies a central role in the model, are grouped into three model state
variables: cyanobacteria (blue-green algae), diatoms, and green algae. The subscript x, is
used to denote four algal groups: c for cyanobacteria, d for diatoms, g for green algae, and
m for macroalgae. Sources and sinks included in the model are:

1. Growth (production)

2. Basal metabolism

3. Predation

4. Settling

5. External loads

Equations describing these processes are largely the same for the four algal groups with
differences in the values of parameters in the equations. The kinetic equation describing
these processes is:

∂Bx

∂ t
= (Px−BMx−PRx)Bx+

∂

∂Z
(WSxBx)+

WBx

V
(8.6)

where,

Bx is the algal biomass of algal group x (g C/m3),

t is the time (days),

Px is the production rate of algal group x (1/day),
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BMx is the basal metabolism rate of algal group x (1/day),

PRx bis the predation rate of algal group x (1/day),

WSx is the positive settling velocity of algal group x (m/day),

WBx is the external loads of algal group x (g C/day), and

V is the cell volume (m3).

8.2.3.1.1 Production (Algal Growth)

Algal growth depends on nutrient availability, ambient light, and temperature. The
effects of these processes are considered to be multiplicative:

Px = PMx f1 (N) f2 (I) f3 (T ) f4 (S) (8.7)

where,

PMx is the maximum growth rate under optimal conditions for algal group x (1/day),

f1(N) is the effect of suboptimal nutrient concentration (0≤ f1 ≤ 1),

f 2(I) is the effect of suboptimal light intensity (0≤ f2 ≤ 1),

f 3(T ) is the effect of suboptimal temperature (0≤ f3 ≤ 1), and

f4(S) is the effect of salinity on cyanobacteria growth (0≤ f4 ≤ 1),

The freshwater cyanobacteria may undergo rapid mortality in saltwater, e.g., freshwater
organisms in the Potomac River (Thomann et al., 1985). For the freshwater organisms, the
increased mortality is included in the model by the salinity toxicity term in the growth
equation for cyanobacteria. Activation of the salinity toxicity term, f 4(S), is an option in
the source code.

8.2.3.1.1.1 Effect of Nutrients on Algal Growth

Using Liebig’s “law of the minimum” (Odum, 1971) algal growth is determined by the
nutrient in least supply, the nutrient limitation for growth of cyanobacteria and green algae
is expressed as:

f1 (N) =

(
NH4+NO3

KHNx +NH4+NO3
,

PO4d
KHPx +PO4d

,
SAd

KHS+SAd

)
(8.8)

where,

NH4 is the ammonium nitrogen concentration (g N/m3),

NO3 is the nitrate nitrogen concentration (g N/m3),

KHNx is the half-saturation constant for nitrogen uptake for algal group x (g N/m3),
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PO4d is the dissolved phosphate phosphorus concentration (g P/m3),

KHPx is the half-saturation constant for phosphorus uptake for algal group x (g P/m3),

SAd is the concentration of dissolved available silica (g Si/m3), and

KHS is the half-saturation constant for silica uptake for diatoms (g Si/m3).

Some cyanobacteria (e.g., Anabaena) can fix nitrogen from atmosphere and thus are
not limited by nitrogen. Hence, equation (8.8) is not applicable to the growth of nitrogen
fixers. Since diatoms require silica as well as nitrogen and phosphorus for growth, the
nutrient limitation for diatoms includes silica limitation.

8.2.3.1.1.2 Effect of Light on Algal Growth

1. Effect of Light on Algal Growth

The light field in the water column is governed by:

∂ I
∂Z∗

=−Kess I (8.9)

where,

I is the light intensity (W/m2),

Kess is the light extinction coefficient (1/m), and

Z∗ is the depth below the water surface (m).

with the light extinction coefficient being a function of the depth below the water surface.
Integration of (8.9) gives:

I = Iwsexp
(
−
∫ Z∗

0
Kess dZ∗

)
(8.10)

The light intensity at the water surface Iws, is given by

Iws = Iomin(exp(−Keme(HRPS−H)) , 1) (8.11)

where,

Io is the light is the light intensity at the top of the emergent aquatic plant canopy for
emergent shoots or the light intensity at the water surface for submerged shoots
(W/m2),

Keme is the light extinction coefficient for emergent shoots (1/m),

HRPS is the rooted plant shoot height (m), and

H is the water column depth (m).
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When submerged aquatic plants are simulated, the light extinction coefficient in the water
column above the canopy is given by

Kessac = Keb +KeISS · ISS+KeV SS ·V SS+KeChl

M

∑
m=1

(
Bm

CChlm

)
(8.12)

and the light extinction coefficient in the water column within the canopy is given by

Kessic = Keb +KeISS ·SED+KeV SS ·V SS+KeChl

M

∑
m=1

(
Bm

CChlm

)
+KeRPS ·RPS (8.13)

where,

Keb is the background light extinction (1/m),

KeISS is the light extinction coefficient for inorganic suspended solid (1/m perg/m3),

SED is the inorganic suspended solid concentration (g/m3) provided from the hydro-
dynamic model,

KeV SS is the light extinction coefficient for volatile suspended solid (1/m perg/m3),

V SS is the volatile suspended solid concentration (g/m3) provided from the water qual-
ity model,

CChlRPE is the carbon-to-chlorophyll ratio for epiphytes (g C per mg Chl),

KeChl is the light extinction coefficient for algae chlorophyll (1/m per mg Chl/m3),

Bm is the concentration of algae group m (g C per ml),

CChlm is the carbon-to-chlorophyll ratio in algal group m (g C per mg Chl),

KeRPS is the light extinction coefficient for rooted plant shoots (1/m per gm C/m2), and

RPS is the concentration of plant shoots (g C per m2).

The forms of equations (8.12) and (8.13) are quite general and readily allow inclusion
of algae biomass into the volatile suspended solids or visa-versa. The form of equation
(8.13) assumes that the rooted plant shoots are primarily self-shading and that epiphyte
effect are manifested only on the shoot surface.

The solutions of equation (8.10) above and in the rooted plant shoot canopy are

I = Iwsexp(−Kessac Z∗) ; 0≤ Z∗ ≤ H−HRPS (8.14)

I = Ictexp(−Kesic (Z∗−H +HRPS)) (8.15)
Ict = Iwsexp(−Kessac (H−HRPS)) (8.16)

H−HRPS ≤ Z∗ ≤ H (8.17)
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2. Steele’s Equation for Light Limitation

The original version of CE-QUAL-ICM (Cerco and Cole, 1995) used Steele’s equation

f2 (I) =
I

Isx
exp
(

1− I
Isx

)
(8.18)

to express light limitation. A daily and vertically integrated form of Steele’s equation, in
the absences of a plant canopy is:

f2 =
exp(1) FD

Kess (ZB−ZT )
(exp(−αb) − exp(−αT ) ) (8.19)

αB =

(
Iwsavg

FDIsx

)
exp(−Kess ZB) (8.20)

αT =

(
Iwsavg

FDIsx

)
exp(−Kess ZT ) (8.21)

where,

FD is the fractional day length (0≤ FD≤ 1),

Kess is the total light extinction coefficient (1/m),

ZT is the distance from water surface to layer top (m),

ZB is the distance from water surface to layer bottom (m),

Iwsavg is the daily total light intensity at water surface (langleys/day), and

Isx is the optimal light intensity for algal group x (langleys/day).

Optimal light intensity Isx for photosynthesis depends on algal taxonomy, duration of
exposure, temperature, nutritional status, and previous acclimation. Variations in Isx are
largely due to adaptations by algae intended to maximize production in a variable envi-
ronment. Steele (1962) noted the result of adaptations is that the optimal intensity is a
consistent fraction (approximately 50 percent) of daily intensity. Kremer and Nixon (1978)
reported an analogous finding that maximum algal growth occurs at a constant depth (ap-
proximately 1 m) in the water column. Their approach is adopted so that optimal intensity
is expressed as:

Isx = min(Iwsavgexp(−Kess Doptx) , Isxmin) (8.22)

where,

Doptx is the depth of maximum algal growth for algal group x (m),

Iwsavg is the adjusted surface light intensity (W/m2), and

Isxmin is the minimum optimum light intensity (W/m2).
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A minimum Isxmin, in equation (8.22) is specified so that algae do not thrive at ex-
tremely low light levels. The time required for algae to adapt to changes in light intensity is
recognized by estimating Isxmin based on a time-weighted average of daily light intensity:

I0avg =CIaI0 +CIbI1 +CIcI2 (8.23)

where,

I1 is the daily light intensity 1 day preceding model day (langleys/day),

I2 is the daily light intensity 2 days preceding model day (langleys/day), and

CIa,CIb,Cc are the weighting factors for I0, I1 and I2, respectively: CIa +CIb +CIc = 1.

Equations (8.19)-(8.21) can be applied instantaneously by setting the fraction of day-
light to unity. It can also be applied within a canopy by replacing Iws with Ict in the equation
(8.15).

3. Alternate Formulations for Light Limitation

Figure 8.1 of CE-QUAL-ICM (Bunch et al., 2000) used a Monod type limitation

f2 (I) =
I

KHI + I
(8.24)

or a modified Monod limitation (Cerco et al., 2000)

f2 (I) =
I√

KHI2 + I2
(8.25)

where, KHI is the half saturation for light limitation (W/m2).
Equation (8.25) was used in the CE-QUAL-ICM Florida Bay water quality modeling

study Cerco et al. (2000). Equation (8.24) can be directly averaged over a water column
layer to give

f2avg =
1

Kess (ZB−ZT )
ln
(

KHI + Iwsexp(−Kess ZT )
KHI + Iwsexp(−Kess ZB)

)
(8.26)

while the average of equation (8.25) is

f2avg =
1

Kess

1
ZB−ZT


√

1+
(

Iws
KHI exp(−Kess ZT )

)2

−
√

1+
(

Iws
KHI exp(−Kess ZB)

)2

 (8.27)

with ZT and ZB defined in the equation (8.15). Equations (8.26) and (8.27) can be ap-
plied within a canopy by replacing Iws with Ict and use of the appropriate light extinction
coefficient.
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8.2.3.1.1.3 Effect of Temperature on Algal Growth

A Gaussian probability curve is used to represent temperature dependency of algal
growth:

f3 (T ) =


exp
(
−KT G1x(T −T M1X)

2
)

: T ≤ T M1X

1 : T M1X < T < T M2X

exp
(
−KT G2x(T −T M2X)

2
)

: T ≥ T M2X

(8.28)

where

T is the temperature (◦C) provided from the hydrodynamic model,

T Mx is the optimal temperature for algal growth for algal group x (◦C),

KT G1x is the effect of temperature below T M1x on growth for algal group x (1/◦C2),
and

KT G2x is the effect of temperature above T M2x on growth for algal group x (1/◦C2).

The formulation of equation (8.28) represents a modification to the CE-QUAL-ICM
formulation to allow for temperature range specification of optimum growth.

8.2.3.1.1.4 Effect of Salinity on Growth of Freshwater Cyanobacteria

The growth of freshwater cyanobacteria in salt water is limited by:

f4 (S) =
STOXS2

STOXS2 +S2 (8.29)

where,

STOXS is the salinity at which Microcystis growth is halved (ppt), and

S is the salinity in water column (ppt) provided from the hydrodynamic model.

8.2.3.1.2 Effect of Temperature on Algal Basal Metabolism

Algal biomass in the present model decreases through basal metabolism (respiration
and excretion) and predation. Basal metabolism in the present model is the sum of all
internal processes that decrease algal biomass and consists of two parts; respiration and
excretion. In basal metabolism, algal matter (carbon, nitrogen, phosphorus, and silica) is
returned to organic and inorganic pools in the environment, mainly to dissolved organic
and inorganic matter. Respiration, which may be viewed as a reversal of production, con-
sumes dissolved oxygen. Basal metabolism is considered to be an exponentially increasing
function of temperature:

BMx = BMRxexp(KT Bx [T −T Rx]) (8.30)
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where,

BMRx is the basal metabolism rate at T Rxfor algal group x (1/day),

KT Bx is the effect of temperature on metabolism for algal group x (1/◦C), and

T Rx is the reference temperature for basal metabolism for algal group x (◦C).

8.2.3.1.3 Effect of Algal Biomass and Temperature on Algal Predation

The present model does not include zooplankton. Instead, a constant rate can be spec-
ified for the algal predation, which implicitly assumes zooplankton biomass is a constant
fraction of algal biomass. Alternately, the predation rate can be taken as proportional to the
algae biomass. Using a temperature effect similar to that for metabolism, the predation rate
is given as

PRx = PRRx

(
Bx

BxP

)αP

exp(KT Px [T −T Rx]) (8.31)

where,

PRRx is the reference predation rate at BxP and T Rx for algal group x (1/day),

BxP is the reference algae concentration for predation (g C/m3),

αP is the exponential dependence factor, and

KT Px is the effect of temperature on predation for algal group x (1/◦C).

The difference between predation and basal metabolism lies in the distribution of the
end products of the two processes. In predation, algal matter (carbon, nitrogen, phospho-
rus, and silica) is returned to the organic and inorganic pools in the environment, mainly
to particulate organic matter. It is also noted that predation in the EFDC+ water quality
model follows the original formulation in the CE-QUAL-ICM model (Cerco and Cole,
1995) which uses a predation rate constant with total predation loss being proportional
to algae concentration. Subsequent CE- QUAL-ICM documentation Cerco et al. (2000),
appear to define predation independent of algae concentration.

8.2.3.1.4 Algal Settling

Settling velocities for four algal groups, WSc, WSd, WSg, and WSm, are specified as an
input. Seasonal variations in settling velocity of diatoms can be accounted for by specifying
time-varying WSd.

8.2.3.2 Organic Carbon

The present model has three state variables for organic carbon: refractory particulate,
labile particulate, and dissolved.
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8.2.3.2.1 Particulate Organic Carbon

Labile and refractory distinctions are based on the time scale of decomposition. Labile
particulate organic carbon with a decomposition time scale of days to weeks decomposes
rapidly in the water column or in the sediments. Refractory particulate organic carbon
with a longer than weeks decomposition time scale decomposes slowly, primarily in the
sediments, and may contribute to sediment oxygen demand years after decomposition. For
labile and refractory particulate organic carbon, sources and sinks included in the model
are (Figure 8.1):

1. Algal predation,

2. Dissolution to dissolved organic carbon,

3. Settling, and

4. External loads.

The governing equations for refractory and labile particulate organic carbons are:

∂RPOC
∂ t

= ∑
x=c,d,g,m

FCRPX PRX BX −KRPOCRPOC+
∂

∂Z
(WSRPRPOC)+

WRPOC
V

(8.32)

∂LPOC
∂ t

= ∑
x=c,d,g,m

FCLPX PRX BX−KLPOCLPOC+
∂

∂Z
(WSLPLPOC)+

WLPOC
V

(8.33)

where,

RPOC is the concentration of refractory particulate organic carbon (g C/m3),

LPOC is the concentration of labile particulate organic carbon (g C/m3),

FCRP is the fraction of predated carbon produced as refractory particulate organic Car-
bon,

FCLP is the fraction of predated carbon produced as labile particulate organic carbon,

KRPOC is the dissolution rate of refractory particulate organic carbon (1/day),

KLPOC is the dissolution rate of labile particulate organic carbon (1/day),

WSRP is the settling velocity of refractory particulate organic matter (m/day),

WLP is the settling velocity of labile particulate organic matter (m/day),

WRPOC is the external loads of refractory particulate organic carbon (g C/day), and

WLPOC is the external loads of labile particulate organic carbon (g C/day.)
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8.2.3.2.2 Dissolved Organic Carbon

Sources and sinks for dissolved organic carbon included in the model are (Figure 8.1):

1. Algal excretion (exudation) and predation,

2. Dissolution from refractory and labile particulate organic carbon,

3. Heterotrophic respiration of dissolved organic carbon (decomposition),

4. Denitrification, and

5. External loads.

The kinetic equation describing these processes is:

∂DOC
∂ t

= ∑
x=c,d,g,m

([
FCDX +(1−FCDX)

(
KHRX

KHRX +DO

)]
+FCDPX PRX

)
BX

+KRPOCRPOC+KLPOCLPOC−KHRDOC−DenitDOC+
WDOC

V
(8.34)

where,

DOC is the concentration of dissolved organic carbon (g C/m3),

FCDx is the fraction of basal metabolism exuded as dissolved organic carbon at infinite
dissolved oxygen concentration for algal group x,

KHRx is the half-saturation constant of dissolved oxygen for algal dissolved organic
carbon excretion for group x (g O2/m3),

DO is the dissolved oxygen concentration (g O2/m3),

FCDP is the fraction of predated carbon produced as dissolved organic carbon,

KHR is the heterotrophic respiration rate of dissolved organic carbon (1/day),

Denit is the denitrification rate (1/day),

BFDOC is the benthic flux of dissolved organic carbon in bottom layer only
(g C/m2/day), and

WDOC is the external loads of dissolved organic carbon (g C/day).

The remainder of this section explains each term in equations (8.32)-(8.34).

8.2.3.2.3 Effect of Algae on Organic Carbon

The terms within summation (Σ) in equations (8.32)-(8.34) account for the effects of
algae on organic carbon through basal metabolism and predation.
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8.2.3.2.3.1 Basal Metabolism

Basal metabolism, consisting of respiration and excretion, returns algal matter (carbon,
nitrogen, phosphorus, and silica) back to the environment. Loss of algal biomass through
basal metabolism is:

∂Bx

∂ t
=−BMxBx (8.35)

The equation (8.35) indicates that the total loss of algal biomass due to basal
metabolism is independent of ambient dissolved oxygen concentration. In this model, it
is assumed that the distribution of total loss between respiration and excretion is constant
as long as there is sufficient dissolved oxygen for algae to respire. Under that condition,
the losses by respiration and excretion may be written as:

(1−FCDx)BMxBx : respiration (8.36)

FCDxBMxBx : excretion (8.37)

where, FCDx is a constant of value between 0 and 1.0.
Algae cannot respire in the absence of oxygen, however. Although the total loss of algal

biomass due to basal metabolism is oxygen independent (equation (8.35)), the distribution
of total loss between respiration and excretion is oxygen-dependent. When oxygen level
is high, respiration is a large fraction of the total. As dissolved oxygen becomes scarce,
excretion becomes dominant. Thus, equation (8.36) represents the loss by respiration only
at high oxygen levels. In general, equation (8.36) can be decomposed into two fractions as
a function of dissolved oxygen availability:

(1−FCDx)

(
DO

KHRx +DO

)
BMxBx : respiration (8.38)

(1−FCDx)

(
KHRx

KHRx +DO

)
BMxBx : excretion (8.39)

where, KHRx is the metabolic DO coefficient (g/m3 O2).
Equation (8.38) represents the loss of algal biomass by respiration, and equation (8.39)

represents additional excretion due to insufficient dissolved oxygen concentration. The
parameter KHRx, which is defined as the half-saturation constant of dissolved oxygen for
algal dissolved organic carbon excretion in equation (8.34), can also be defined as the half-
saturation constant of dissolved oxygen for algal respiration in equation (8.39).

Combining equations (8.37) and (8.39) the total loss due to excretion is:[
FCDX +(1+FCDX)

(
KHRX

KHRX +DO

)]
BMX BX (8.40)

Equations (8.38) and (8.40) combine to give the total loss of algal biomass due to basal
metabolism BMxABx, equation (8.35). The definition of FCDx in equation (8.34) becomes
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apparent in equation (8.40), (i.e., fraction of basal metabolism exuded as dissolved organic
carbon at infinite dissolved oxygen concentration). At zero oxygen level, 100 percent of
total loss due to basal metabolism is by excretion regardless of FCDx. The end carbon
product of respiration is primarily carbon dioxide, an inorganic form not considered in the
present model, while the end carbon product of excretion is primarily dissolved organic
carbon. Therefore, equation (8.40), that appears in equation (8.34), represents the contri-
bution of excretion to dissolved organic carbon, and there is no source term for particulate
organic carbon from algal basal metabolism in equations (8.32) and (8.33).

Although this general formulation is incorporated for consistency with the original CE-
QUAL-IMC formulation (Cerco and Cole, 1995), most of the subsequent applications of
CE-QUAL-ICM have simplified the basal metabolism in the published DOC and DO equa-
tions or specified input parameters which effectively set KHRx and FCDx to zero (see Table
8.2), which results in simplifying the DOC equation to

∂DOC
∂ t

= ∑
x=c,d,g,m

FCDPX PRX BX +KRPOCRPOC+KLPOCLPOC

−KHRDOC−Denit DOC+
WDOC

V
(8.41)

8.2.3.2.3.2 Predation

Algae produce organic carbon through the effects of predation. Zooplankton take
up and redistribute algal carbon through grazing, assimilation, respiration, and excretion.
Since zooplankton are not included in the model, routing of algal carbon through zoo-
plankton predation is simulated by empirical distribution coefficients in equations (8.32)
to (8.34); FCRP, FCLP, and FCDP. The sum of these three predation fractions should be
unity.

8.2.3.2.4 Heterotrophic Respiration and Dissolution

The refractory and labile particulate organic carbon equations (8.32) and (8.34) contain
decay terms that represent dissolution of particulate material into dissolved material. These
terms appear in equation (8.34) as sources. The third sink term in the DOC equation (8.34)
represents heterotrophic respiration of dissolved organic carbon. The oxic heterotrophic
respiration is a function of dissolved oxygen; the lower the dissolved oxygen, the smaller
the respiration term becomes. Heterotrophic respiration rate, therefore, is expressed using
a Monod function of dissolved oxygen:

KHR =

(
DO

KHORDO +DO

)
KDOC (8.42)

where,
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Table 8.2. Basal Metabolism Formulations and Parameter in CE-QUAL-ICM

Study FCDx and KHRx in DOC
Equation

FCDx and KHRx in from DO
Equation

Cerco and Cole (1995)
(Chesapeake Bay)

General General

Bunch et al. (2000) (San
Juan Bay, PR)

General (used FCD = 0,
KHRx = 0.5)

General (used FCD = 0,
KHRx = 0.5)

Cerco et al. (2000)
(Florida Bay)

No BMx source in equa-
tion, implies FCDx = 0,
KHRx = 0

Consistent with FCDx = 0,
KHRx = 0

Cerco et al. (2002)
(Chesapeake Bay, Trib.
Refinements)

No BMx source in equa-
tion, implies FCDx = 0,
KHRx = 0

Consistent with FCDx = 0,
KHRx = 0

Cerco et al. (2004)
(Lake Washington)

Equation implies KHRx =
0 (used FCDx = 0)

Consistent with KHRx = 0
(used FCDx = 0)

Tillman et al. (2004)
(St. Johns River)

No BMx source in equa-
tion, implies FCDx = 0,
KHRx = 0

Consistent with FCDx = 0,
KHRx = 0

KHORDO is the oxic respiration half-saturation constant for dissolved oxygen
(g O2/m3), and

KDOC is the heterotrophic respiration rate of dissolved organic carbon at infinite dis-
solved oxygen concentration (1/day).

Dissolution and heterotrophic respiration rates depend on the availability of carbona-
ceous substrate and on heterotrophic activity. Algae produce labile carbon that fuels het-
erotrophic activity: dissolution and heterotrophic respiration do not require the presence
of algae though, and may be fueled entirely by external carbon inputs. In the model, al-
gal biomass, as a surrogate for heterotrophic activity, is incorporated into formulations of
dissolution and heterotrophic respiration rates. Formulations of these rates require specifi-
cation of algal-dependent and algal- independent rates:

KRPOC =

(
KRC +KRCalg ∑

x=c,d,g
Bx

)
exp(KTHDR (T −T RHDR)) (8.43)

KLPOC =

(
KLC +KLCalg ∑

x=c,d,g
Bx

)
exp(KTHDR (T −T RHDR)) (8.44)
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KDOC =

(
KDC +KDCalg ∑

x=c,d,g
Bx

)
exp(KTMIN (T −T RMIN)) (8.45)

where,

KRC is the minimum dissolution rate of refractory particulate organic carbon (1/day),

KLC is the minimum dissolution rate of labile particulate organic carbon (1/day),

KDC is the minimum respiration rate of dissolved organic carbon (1/day),

KRCalg,KLCalg are the constants that relate dissolution of refractory and labile particulate
organic carbon, respectively, to algal biomass (1/day; per g C/m3),

KDCalg is the constant that relates respiration to algal biomass (1/day per g C/m3),

KTHDR is the effect of temperature on hydrolysis of particulate organic matter (1/◦C),

T RHDR is the reference temperature for hydrolysis of particulate organic matter (◦C),

KTMIN is the effect of temperature on mineralization of dissolved organic matter (1/◦C),
and

T RMIN is the reference temperature for mineralization of dissolved organic matter (◦C).

Equations (8.43) to (8.45) have exponential functions that relate rates to temperature.
In the present model, the term “hydrolysis” is defined as the process by which particu-

late organic matter is converted to dissolved organic form, and thus includes both dissolu-
tion of particulate carbon and hydrolysis of particulate phosphorus and nitrogen. Therefore,
the parameters KT HDR and T RHDR, are also used for the temperature effects on hydrolysis
of particulate phosphorus (equations (8.58) and (8.59)) and nitrogen (equations (8.73) and
(8.74)). The term ”mineralization” is defined as the process by which dissolved organic
matter is converted to dissolved inorganic form, and thus includes both heterotrophic respi-
ration of dissolved organic carbon and mineralization of dissolved organic phosphorus and
nitrogen. Therefore, the parameters, KTMIN and T RMIN , are also used for the temperature
effects on mineralization of dissolved phosphorus (8.60) and nitrogen (8.75).

8.2.3.2.5 Effect of Denitrification on Dissolved Organic Carbon

As oxygen is depleted from natural systems, organic matter is oxidized by the reduction
of alternate electron acceptors. Thermodynamically, the first alternate acceptor reduced in
the absence of oxygen is nitrate. The reduction of nitrate by a large number of heterotrophic
anaerobes is referred to as denitrification, and the stoichiometry of this reaction is Stumm
et al. (1970).

4NO−3 +4H++5CH2O→ 2N2 +7H2O+5CO2 (8.46)
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The last term in the equation (8.34) accounts for the effect of denitrification on dissolved
organic carbon. The kinetics of denitrification in the model are first-order:

Denit =
(

KRORDO

KRORDO +DO

)(
NO3

KHDNN +NO3

)
AANOXKDOC (8.47)

where,

KRORDO is the denitrification half-saturation constant for dissolved oxygen (g O/m3),

KHDNN is the denitrification half-saturation constant for nitrate (g N/m3), and

AANOX is the ratio of denitrification rate to oxic dissolved organic carbon respiration
rate.

In equation (8.47), the dissolved organic carbon respiration rate KDOC, is modified so
that significant decomposition via denitrification occurs only when nitrate is freely avail-
able and dissolved oxygen is depleted. The ratio AANOX , makes the anoxic respiration
slower than oxic respiration. Note that KDOC, defined in equation (8.45), includes the tem-
perature effect on denitrification.

8.2.3.2.6 Labile and Refractory Splitting of Dissolved Organic Carbon

A number of water quality models, including the CE-QUAL-ICM application to the St.
Johns River, Florida (Tillman et al., 2004) split dissolved organic carbon into labile and
refractory components. The refractory component equation is

∂RDOC
∂ t

= ∑
x=c,d,g,m

FCRDPX PRX BX −KRDOCRDOC+
WRDOC

V
(8.48)

where,

RDOC is the concentration of dissolved organic carbon (g C/m3),

FCRDP is the fraction of predated carbon produced as dissolved organic carbon,

KRDOC is the respiration rate of refractory dissolved organic carbon (1/day), and

WRDOC is the external loads of dissolved organic carbon (g C/day).

The decay term in (8.48) can include a photoreaction component. The labile component
equation retains the general form of the DOC equation

∂LDOC
∂ t

= ∑
x=c,d,g,m

FCLDP PRX BX +KRPOCRPOC

+KLPOCLPOC−KLDOCLDOC−Denit LDOC+
WLDOC

V
(8.49)

where,
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LDOC is the concentration of dissolved organic carbon (g C/m3),

FCLDP is the fraction of predated carbon produced as dissolved organic carbon,

KLDOC is the respiration rate of labile dissolved organic carbon (1/day), and

WLDOC is the external loads of dissolved organic carbon (g C/day).

Equations (8.48) and (8.49) follow from Tillman et al. (2004), but are not currently
implemented in the EFDC+ water quality model.

8.2.3.3 Phosphorus

The present model has four state variables for phosphorus: three organic forms (refrac-
tory particulate, labile particulate, and dissolved) and one inorganic form representing the
sum of dissolved and particulate phosphate in the water phase, but exclude phosphate in
algae cells.

8.2.3.3.1 Particulate Organic Phosphorus

For refractory and labile particulate organic phosphorus, sources and sinks included in
the model are (Figure 8.1);

1. Algal basal metabolism and predation,

2. Dissolution to dissolved organic phosphorus,

3. Settling, and

4. External loads.

The kinetic equations for refractory and labile particulate organic phosphorus are;

∂RPOP
∂ t

= ∑
x=c,d,g,m

(FPRX BMX +FPRPX PRX)APCX BX

−KRPOPRPOP+
∂

∂Z
(WSRPRPOP)+

WRPOP
V

(8.50)

∂LPOP
∂ t

= ∑
x=c,d,g,m

(FPLX BMX +FPLPX PRX)APCX BX

−KLPOPLPOP+
∂

∂Z
(WSRPLPOP)+

WLPOP
V

(8.51)

where,
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RPOP is the concentration of refractory particulate organic phosphorus (g P/m3),

LPOP is the concentration of labile particulate organic phosphorus (g P/m3),

FPRx is the fraction of metabolized phosphorus by algal group x produced as refractory
particulate organic phosphorus,

FPLx is the fraction of metabolized phosphorus by algal group x produced as labile
particulate organic phosphorus,

FPRP is the fraction of predated phosphorus produced as refractory particulate organic
phosphorus,

FPLP is the fraction of predated phosphorus produced as labile particulate organic
phosphorus,

APC is the mean algal phosphorus-to-carbon ratio for all algal groups (g P per g C),

KRPOP is the hydrolysis rate of refractory particulate organic phosphorus (1/day),

KLPOP is the hydrolysis rate of labile particulate organic phosphorus (1/day),

WRPOP is the external loads of refractory particulate organic phosphorus (g P/day),
and

WLPOP is the external loads of labile particulate organic phosphorus (g P/day).

8.2.3.3.2 Dissolved Organic Phosphorus

Sources and sinks for dissolved organic phosphorus included in the model are (Figure
8.1);

1. Algal basal metabolism and predation,

2. Dissolution from refractory and labile particulate organic phosphorus,

3. Mineralization to phosphate phosphorus, and

4. External loads.

The kinetic equation describing these processes is:

∂DOP
∂ t

= ∑
x=c,d,g,m

(FPDX BMX +FPDPX PRX)APCX BX

+KRPOPRPOP+KLPOPLPOP−KDOPDOP+
WDOP

V
(8.52)

where

DOP is the concentration of dissolved organic phosphorus (g P/m3),
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FPDx is the fraction of metabolized phosphorus by algal group x produced as dissolved
organic phosphorus,

FPDPx is the fraction of predated phosphorus produced as dissolved organic phospho-
rus,

KDOP is the mineralization rate of dissolved organic phosphorus (1/day), and

WDOP is the external loads of dissolved organic phosphorus (g P/day).

8.2.3.3.3 Total Water Phase Phosphate

For total phosphate that includes both dissolved and sorbed phosphate in the water
phase, sources and sinks included in the model are;

1. Algal basal metabolism, predation, and uptake,

2. Mineralization from dissolved organic phosphorus,

3. Settling of sorbed phosphate,

4. Sediment-water exchange of dissolved phosphate for the bottom layer only, and

5. External loads.

The kinetic equation describing these processes is

∂

∂ t
(PO4p+PO4d) =

∑
x=c,d,g,m

(FPIX BMX +FPIPX PRX −PX)APCX BX +KDOPDOP

+
∂

∂Z
(WST SSPO4p)+

BFPO4d
∆Z

+
WPO4p

V
+

WPO4d
V

(8.53)

where,

PO4t = PO4d +PO4p is the total phosphate (g P/m3),

PO4d is the dissolved phosphate (g P/m3),

PO4p is the particulate (sorbed) phosphate (g P/m3),

FPIx is the fraction of metabolized phosphorus by algal group x produced as inorganic
phosphorus,

FPIP is the fraction of predated phosphorus produced as inorganic phosphorus,

WST SS is the settling velocity of suspended solid (m/day), provided by the hydrody-
namic model,
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BFPO4d is the sediment-water exchange flux of phosphate (g P/m2/day), applied to
the bottom layer only, and

WPO4t is the external loads of total phosphate (g P/day).

In equation (8.53), if the total active metal is chosen as a measure of sorption site, the
settling velocity of total suspended solid WST SS, is replaced by that of particulate metal
WSs. The remainder of this section explains each term in equations (8.50) to (8.53). Alter-
nate forms of the total phosphate equation are discussed in next paragraph.

8.2.3.3.4 Total Phosphate System

Suspended and bottom sediment particles (clay, silt, and metal hydroxides) adsorb and
desorb phosphate in river and estuarine waters. This adsorption-desorption process buffers
phosphate concentration in the water column and enhances the transport of phosphate away
from its external sources (Carritt and Goodgal, 1954; Froelich, 1988). To ease the compu-
tational complication due to the adsorption-desorption of phosphate, dissolved and sorbed
phosphate are treated and transported as a single state variable. Therefore, the model phos-
phate state variable total phosphate, is defined as the sum of dissolved and sorbed phosphate
(equation (8.53)), and the concentrations for each fraction are determined by equilibrium
partitioning of their sum.

In CE-QUAL-ICM, sorption of phosphate to particulate species of metals including iron
and manganese was considered based on a phenomenon observed in the monitoring data
from the mainstem of the Chesapeake Bay: phosphate was rapidly depleted from anoxic
bottom waters during the autumn reaeration event (Cerco and Cole, 1994). Their hypoth-
esis was; reaeration of bottom waters caused dissolved iron and manganese to precipitate,
and phosphate sorbed to newly formed metal particles and rapidly settled to the bottom.
One state variable total active metal, in CE-QUAL-ICM was defined as the sum of all met-
als that acts as sorption sites, and the total active metal was partitioned into particulate
and dissolved fractions via an equilibrium partitioning coefficient. Then phosphate was
assumed to sorb to only the particulate fraction of the total active metal.

In the treatment of phosphate sorption in CE-QUAL-ICM, the particulate fraction of
metal hydroxides was emphasized as a sorption site in bottom waters under anoxic con-
ditions. Phosphorus is a highly particle-reactive element, and phosphate in solution reacts
quickly with a wide variety of surfaces, being taken up by and released from particles
Froelich (1988). The present model has two options, total suspended solids and total active
metal, as a measure of a sorption site for phosphate, and dissolved and sorbed fractions are
determined by equilibrium partitioning of their sum as a function of total suspended solids
or total active metal concentration:
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PO4p =

(
KPO4pSORPS

1+KPO4pSORPS

)
(PO4p+PO4d)

PO4p =

(
1

1+KPO4pSORPS

)
(PO4p+PO4d)

SORPS = SED or TAMP

(8.54)

where,

KPO4p is the empirical coefficient relating phosphate sorption to total suspended solid
(per g/m3) or particulate total active metal (per mol/m3) concentration,

SED is the inorganic sediment concentration (mg/l), and

TAMp is the particulate total active metal (mol/m3).

The definition of the partition coefficient alternately follows form (8.54)

KPO4p =
PO4p
PO4d

1
T SS

(8.55)

KPO4p =
PO4p
PO4d

1
TAMp

(8.56)

where the meaning of KPO4p becomes apparent, i.e., the ratio of sorbed to dissolved
phosphate per unit concentration of total suspended solid or particulate total active metal
(i.e., per unit sorption site available).

8.2.3.3.5 Algal Phosphorus-to-Carbon Ratio (APC)

Algal biomass is quantified in units of carbon per volume of water. In order to express
the effects of algal biomass on phosphorus and nitrogen, the ratios of phosphorus-to-carbon
and nitrogen-to-carbon in algal biomass must be specified. Although global mean values
of these ratios are well known (Redfield, 1963), algal composition varies especially as a
function of nutrient availability. As phosphorus and nitrogen become scarce, algae adjust
their composition so that smaller quantities of these vital nutrients are required to produce
carbonaceous biomass (Di Toro, 1980). Examining the field data from the surface of upper
Chesapeake Bay, Cerco and Cole (1993) showed that the variation of nitrogen-to-carbon
stoichiometry was small and thus used a constant algal nitrogen-to-carbon ratio ANCx.
Large variations, however, were observed for algal phosphorus-to-carbon ratio indicating
the adaptation of algae to ambient phosphorus concentration (Cerco and Cole, 1993); algal
phosphorus content is high when ambient phosphorus is abundant and is low when ambient
phosphorus is scarce. Thus, a variable algal phosphorus-to-carbon ratio APC, is used in
model formulation. A mean ratio for all algal groups APC, is described by an empirical
approximation to the trend observed in field data (Cerco and Cole, 1994):
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APC =
(
CP1prm +CP2prmexp

(
−CP3prmPO4d

) )−1 (8.57)

where

CP1prm is the minimum carbon-to-phosphorus ratio (g C per g P),

CP2prm is the difference between minimum and maximum carbon-to-phosphorus ratio
(g C per g P), and

CP3prm is the effect of dissolved phosphate concentration on carbon-to-phosphorus ra-
tio (per g P/m3).

8.2.3.3.6 Effect of Algae on Phosphorus

The terms within summation in equations (8.50) to (8.53) account for the effects of
algae on phosphorus. Both basal metabolism (respiration and excretion) and predation are
considered, and thus formulated, to contribute to organic and phosphate phosphorus. That
is, the total loss by basal metabolism (BMxABx) is distributed using distribution coefficients
(FPRx, FPLx, FPDx, and FPIx). The total loss by predation (PRxABx), is also distributed
using distribution coefficients (FPRP,FPLP, FPDP, and FPIP). The sum of four distri-
bution coefficients for basal metabolism should be unity, and as is the sum for predation.
Algae take up dissolved phosphate for growth, and algae uptake of phosphate is represented
by (−3PxAAPCABx) in equation (8.53).

8.2.3.3.7 Mineralization and Hydrolysis

The third term on the RHS of equations (8.50) and (8.51) represents hydrolysis of par-
ticulate organic phosphorus and the last term in equation (8.52) represents mineralization
of dissolved organic phosphorus. Mineralization of organic phosphorus is mediated by the
release of nucleotidase and phosphatase enzymes by bacteria Chróst and Overbeck (1987)
and algae Boni et al. (1989). Since the algae themselves release the enzymes and bacte-
rial abundance is related to algal biomass, the rate of organic phosphorus mineralization is
related to algal biomass in model formulation. Another mechanism included in the model
formulation is that algae stimulate production of an enzyme that mineralizes organic phos-
phorus to phosphate when phosphate is scarce (Boni et al., 1989; Chróst and Overbeck,
1987). The formulations for hydrolysis and mineralization rates including these processes
are:

KRPOP =

(
KRP +

(
KHP

KHP+PO4d

)
KRPalg ∑

x=c,d,g,m
Bx

)
exp(KTHDR (T −T RHDR))

(8.58)

164 EFDC+ Theory Document



8. EUTROPHICATION MODULE

KLPOP =

(
KLP +

(
KHP

KHP+PO4d

)
KLPalg ∑

x=c,d,g,m
Bx

)
exp(KTHDR (T −T RHDR))

(8.59)

KDOP =

(
KDP +

(
KHP

KHP+PO4d

)
KDPalg ∑

x=c,d,g,m
Bx

)
exp(KTMIN (T −T RMIN))

(8.60)
where

KRP is the minimum hydrolysis rate of refractory particulate organic phosphorus
(1/day),

KLP is the minimum hydrolysis rate of labile particulate organic phosphorus (1/day),

KDP is the minimum mineralization rate of dissolved organic phosphorus (1/day),

KRPalg and KLPalg are the constants that relate hydrolysis of refractory and labile partic-
ulate organic phosphorus, respectively, to algal biomass (1/day per g C/m3),

KDPalg is the constant that relates mineralization to algal biomass (1/day per g C/m3),
and

KHP is the mean half-saturation constant for algal phosphorus uptake (g P/m3).

KHP =
∑x=c,d,g,m KHPX

∑x=c,d,g,m x
(8.61)

When phosphate is abundant relative to KHP, the rates are close to the minimum values
with little influence from algal biomass. When phosphate becomes scarce relative to KHP,
the rates increase with the magnitude of increase depending on algal biomass. Equations
(8.58) to (8.60) have exponential functions that relate rates to temperature.

8.2.3.3.8 Alternate Forms of the Total Phosphate Equation

In the CE-QUAL-ICM model (Cerco and Cole, 1995), total phosphate is defined to
include dissolved phosphate in algae cells. The phosphate in algae cells is given by
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∂PO4a
∂ t

= ∑
x=c,d,g,m

(APC BX)

= ∑
x=c,d,g,m

(PX −FPIX BMX −FPIP PRX) APCX BX

− ∑
x=c,d,g,m

(FPRX BMX +FPRP PRX) APCX BX

− ∑
x=c,d,g,m

(FPLX BMX +FPLP PRX) APCX BX

− ∑
x=c,d,g,m

(FPDX BMX +FPDP PRX) APCX BX

+
∂

∂Z

(
∑

x=c,d,g,m
WSAlgX APCX BX

)
(8.62)

Where the first term on the right side represents net uptake of phosphate from the water
column, and the subsequent three terms represent loss of organic phosphorous. Noting
that the distribution factors for basal metabolism and predation must sum to unity, (8.62)
reduces to

∂PO4a
∂ t

= ∑
x=c,d,g,m

(PX −BMX −PRX)APCX BX +
∂

∂Z

(
∑

x=c,d,g,m
WSAlgX APCX BX

)
(8.63)

which is simply equation (8.6) multiplied by the algae phosphorous to carbon ratio and
summed over all algae species. Combining (8.63) with (8.64) gives

∂

∂ t
(PO4p+PO4d +PO4a) =

KDOPDOP− ∑
x=c,d,g,m

((1−FPIX)BMX +(1−FPIP)PRX)APCX BX

+
∂

∂Z

(
WST SSPO4p+ ∑

x=c,d,g,m
WSAlgX APCX BX

)
+

BFPO4d
∆Z

+
WPO4p

V
+

WPO4d
V

(8.64)

It is noted that this equation differs from Cerco and Cole (1995, equation (3-51)), which
is in error, but is identical to the subsequently corrected in Cerco et al. (2000, equation 35)
which documents the Florida Bay CE-QUAL-ICM model application. Thus, either equa-
tions (8.53) or (8.64) can be used for total phosphate as long as partitioning between partic-
ulate and dissolved phosphate in the water phase is appropriately represented by equations
(8.54) and (8.66).

166 EFDC+ Theory Document



8. EUTROPHICATION MODULE

8.2.3.3.9 Labile and Refractory Splitting of Dissolve Organic Phosphorous

A number of water quality models, including the CE-QUAL-ICM application to the St.
Johns River, Florida (Tillman et al., 2004) split dissolved organic phosphorous into labile
and refractory components. The refractory component equation is

∂RDOP
∂ t

= ∑
x=c,d,g,m

(FPRDX BMX +FPRDPX PRX) APCX BX

−KRDOPRDOP+
WRDOP

V
(8.65)

where,

RDOP is the concentration of refractory dissolved organic phosphorus (g P/m3),

FPRDx is the fraction of metabolized phosphorus by algal group x produced as refrac-
tory dissolved organic phosphorus,

FPRDP is the fraction of predated phosphorus produced as refractory dissolved organic
phosphorus,

KRDOP is the mineralization rate of refractory dissolved organic phosphorus (1/day),
and

WRDOP is the external loads of refractory dissolved organic phosphorus (g P/day).

The labile component equation is

∂LDOP
∂ t

= ∑
x=c,d,g,m

(FPLDX BMX +FPLDPX PRX) APCX BX

−KRDOPRDOP+KLPOPLPOP−KLDOPLDOP+
WLDOP

V
(8.66)

where,

LDOP is the concentration of dissolved organic phosphorus (g P/m3),

FPLDx is the fraction of metabolized phosphorus by algal group x produced as dis-
solved organic phosphorus,

FPLDP is the fraction of predated phosphorus produced as dissolved organic phospho-
rus,

KLDOP is the mineralization rate of dissolved organic phosphorus (1/day), and

WLDOP is the external loads of dissolved organic phosphorus (g P/day).

Equations (8.65) and (8.66) follow from Tillman et al. (2004), but are not currently
implemented in the EFDC+ water quality model.
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8.2.3.4 Nitrogen

The present model has five state variables for nitrogen: three organic forms (refractory
particulate, labile particulate, and dissolved) and two inorganic forms (ammonium and
nitrate). The nitrate state variable in the model represents the sum of nitrate and nitrite.

8.2.3.4.1 Particulate Organic Nitrogen

For refractory and labile particulate organic nitrogen, sources and sinks included in the
model are (Figure 8.1);

1. Algal basal metabolism and predation,

2. Dissolution to dissolved organic nitrogen,

3. Settling, and

4. External loads.

The kinetic equations for refractory and labile particulate organic nitrogen are:

∂RPON
∂ t

= ∑
x=c,d,g,m

(FNRX BMX +FNRPX PRX) ANCX BX −KRPONRPON

+
∂

∂Z
(WSRPRPON)+

WRPON
V

(8.67)

∂LPON
∂ t

= ∑
x=c,d,g,m

(FNLX BMX +FNLPX PRX) ANCX BX −KLPONLPON

+
∂

∂Z
(WSLPLPON)+

WLPON
V

(8.68)

where,

RPON is the concentration of refractory particulate organic nitrogen (g N/m3),

LPON is the concentration of labile particulate organic nitrogen (g N/m3),

FNRx is the fraction metabolized nitrogen by algal group x as refractory particulate
organic nitrogen,

FNLx is the fraction of metabolized nitrogen by algal group x produced as labile par-
ticulate organic nitrogen,

FNRP is the fraction of predated nitrogen produced as refractory particulate organic
nitrogen,
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FNLP is the fraction of predated nitrogen produced as labile particulate organic nitro-
gen,

ANCx is the nitrogen-to-carbon ratio in algal group x (g; N; per g C),

KRPON is the hydrolysis rate of refractory particulate organic nitrogen (1/day),

KLPON is the hydrolysis rate of labile particulate organic nitrogen (1/day),

WRPON is the external loads of refractory particulate organic nitrogen (g N/day), and

WLPON is the external loads of labile particulate organic nitrogen (g N/day).

8.2.3.4.2 Dissolved Organic Nitrogen

Sources and sinks for dissolved organic nitrogen included in the model are (Figure 8.1);

1. Algal basal metabolism and predation,

2. Dissolution from refractory and labile particulate organic nitrogen,

3. Mineralization to ammonium, and

4. External loads.

The kinetic equation describing these processes is:

∂DON
∂ t

= ∑
x=c,d,g,m

(FNDX BMX +FNDPX PRX) ANCX BX

+KRPONRPON +KLPONLPON−KDONDON +
BFDON

∆Z
+

WDON
V

(8.69)

where

DON is the concentration of dissolved organic nitrogen (g N/m3),

FNDx is the fraction of metabolized nitrogen by algal group x produced as dissolved
organic nitrogen,

FNDP is the fraction of predated nitrogen produced as dissolved organic nitrogen,

KDON is the mineralization rate of dissolved organic nitrogen (1/day),

BFDON is the benthic flux of dissolved organic nitrogen in bottom layer only
(g C/m2/day), and

WDON is the external loads of dissolved organic nitrogen (g N/day).
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8.2.3.4.3 Ammonium Nitrogen

Sources and sinks for ammonia nitrogen included in the model are (Figure 8.1):

1. Algal basal metabolism, predation, and uptake,

2. Mineralization from dissolved organic nitrogen,

3. Nitrification to nitrate,

4. Sediment-water exchange for the bottom layer only, and

5. External loads.

The kinetic equation describing these processes is:

∂NH4
∂ t

= ∑
x=c,d,g,m

(FNIX BMX +FNIPX PRX −PNX PX) ANCX BX

+KDONDON−KNit NH4+
BFNH4

∆Z
+

WNH4
V

(8.70)

where

FNIx is the fraction of metabolized nitrogen by algal group x produced as inorganic
nitrogen,

FNIP is the fraction of predated nitrogen produced as inorganic nitrogen,

PNx is the preference for ammonium uptake by algal group x (0≤ PNx ≤ 1),

Knit is the nitrification rate (1/day) given in equation (8.77),

BFNH4 is the sediment-water exchange flux of ammonium (g N/m2/day), applied to
the bottom layer only

WNH4 is the external loads of ammonium (g N/day)

The form of the nitrification sink in (8.70) and the subsequent source in the nitrate equation
(8.71) differ from that in CE-QUAL-ICM.

8.2.3.4.4 Nitrate Nitrogen

Sources and sinks for nitrate nitrogen included in the model are:

1. Algal uptake,

2. Nitrification from ammonium,

3. Denitrification to nitrogen gas,

4. Sediment-water exchange for the bottom layer only, and
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5. External loads.

The kinetic equation describing these processes is:

∂NO3
∂ t

= ∑
x=c,d,g,m

(PNX −1)PX ANCX BX +KNit NH4−

ANDC Denit DOC+
BFNO3

∆Z
+

WNO3
V

(8.71)

where,

ANDC is the mass of nitrate nitrogen reduced per mass of dissolved organic carbon
oxidized (0.933 g N per g C),

BFNO3 is the sediment-water exchange flux of nitrate (g N/m2/day), applied to the
bottom layer only, and

WNO3 is the external loads of nitrate (g N/day).

The remainder of this section explains each term in equations (8.67)-(8.71).

8.2.3.4.5 Effect of Algae on Nitrogen

The terms within summation in equations (8.67) to (8.71) account for the ef-
fects of algae on nitrogen. As in phosphorus, both basal metabolism (respi-
ration and excretion) and predation are considered, and thus formulated to con-
tribute to organic and ammonium nitrogen. That is, algal nitrogen released by
both basal metabolism and predation are represented by distribution coefficients
(FNRx, FNLx, FNDx, FNIx, FNRP, FNLP, FNDP, and FNIP). The sum of the four
distribution coefficients for basal metabolism should be unity; the sum of the predation
distribution coefficients should also be unity.

Algae take up ammonium and nitrate for growth, and ammonium is preferred from
thermodynamic considerations. The preference of algae for ammonium is expressed as

PNX = NH4
(

NO3
(KHNX +NH4)(KHNX +NO3)

)
+

NH4
(

KHNX

(NH4+NO3)(KHNX +NO3)

)
(8.72)

This equation forces the preference for ammonium to be unity when nitrate is absent,
and to be zero when ammonium is absent.
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8.2.3.4.6 Mineralization and Hydrolysis

The third term on the RHS of equations (8.67) and (8.68) represents hydrolysis of par-
ticulate organic nitrogen and the last term in equation (8.69) represents mineralization of
dissolved organic nitrogen. Including a mechanism for accelerated hydrolysis and miner-
alization during nutrient-limited conditions, the formulations for these processes are:

KRPON =

(
KRN +

(
KHN

KHN +NH4+NO3

)
KRNalg ∑

x=c,d,g,m
Bx

)
exp(KTHDR (T −T RHDR))

(8.73)

KLPON =

(
KLN +

(
KHN

KHN +NH4+NO3

)
KLNalg ∑

x=c,d,g,m
Bx

)
exp(KTHDR (T −T RHDR))

(8.74)

KDON =

(
KDN +

(
KHN

KHN +NH4+NO3

)
KDNalg ∑

x=c,d,g,m
Bx

)
exp(KTMIN (T −T RMIN))

(8.75)
where,

KRN is the minimum hydrolysis rate of refractory particulate organic nitrogen (1/day),

KLN is the minimum hydrolysis rate of labile particulate organic nitrogen (1/day),

KDN is the minimum mineralization rate of dissolved organic nitrogen (1/day),

KRNalg and KLNalg are the constants that relate hydrolysis of refractory and labile par-
ticulate organic nitrogen, respectively, to algal biomass (1/day per g C/m3),

KDNalg is the constant that relates mineralization to algal biomass (1/day per g C/m3),
and

KHN is the mean half-saturation constant for algal nitrogen uptake (g N/m3).

KHN =
∑x=c,d,g,m KHNX

∑x=c,d,g,m x
(8.76)

Equations (8.73) to (8.75) have exponential functions that relate rates to temperature.

8.2.3.4.7 Nitrification

Nitrification is a process mediated by autotrophic nitrifying bacteria that obtain energy
through the oxidation of ammonium to nitrite and of nitrite to nitrate. The stoichiometry of
complete reaction is Bowie et al. (1985):
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NH+
4 +2O2→ NO−3 +H2O+2H+ (8.77)

The first term in the second line of equation (8.68) and its corresponding term in equa-
tion (8.71) represent the effect of nitrification on ammonium and nitrate, respectively. The
kinetics of the complete nitrification process are formulated as a function of available am-
monium, dissolved oxygen and temperature:

KNit NH4 = f Nit (T )
(

DO
KHNitDO +DO

)(
NH4

KHNitN +NH4

)
Nitm (8.78)

where,

KHNitDO is the nitrification half-saturation constant for dissolved oxygen (g O2/m3),

KHNitN is the nitrification half-saturation constant for ammonium (g N/m3), and

Nitm is the maximum nitrification rate at TNit (g N/m3/day)

This follows the CE-QUAL-ICM model formulation for nitrification. The Monod func-
tion of dissolved oxygen in equation (8.76) indicates the inhibition of nitrification at low
oxygen level. The Monod function of ammonium indicates that when ammonium is abun-
dant, the nitrification rate is limited by the availability of nitrifying bacteria.

In the EFDC+ water quality model, a reference value of KNit is input into the model
instead of Nitm by writing equation (8.78) as

KNit = f Nit (T )
(

DO
KHNitDO +DO

)(
KHNitN

KHNitN +NH4

)
KNitm (8.79)

where,

KNitm =
Nitm

KHNitN
(8.80)

is interpreted as the linear kinetic rate corresponding to KHNitN equal to unity, since
NH4 is always must less than unity, and DO effects eliminated by setting KHNitDO to
zero. In certain applications, particularly those having long-term BOD and Nitrogen series
test results KNitm is observable.

The temperature function for nitrification in equation (8.78) is given by

f Nit (T ) =


exp
(
−KNit1(T −T Nit1)2 ) : T ≤ T Nit1

1 : T Nit1≤ T ≤ T Nit2

exp
(
−KNit2(T −T Nit12)2

)
: T ≥ T Nit2

(8.81)

where,

T nit1 is the lower optimum temperature for nitrification (◦C),
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T nit2 is the upper optimum temperature for nitrification (◦C),

KNit1 is the effect of temperature below T Nit on nitrification rate (1/◦C2), and

KNit2 is the effect of temperature above T Nit on nitrification rate (1/◦C2).

The effect of suboptimal temperature is represented using Gaussian form.

8.2.3.4.8 Denitrification

The effect of denitrification on dissolved organic carbon was described in Section
8.2.3.2. Denitrification removes nitrate from the system in stoichiometric proportion to
carbon removal as determined by equation (8.46). The sink term in (8.71) represents this
removal of nitrate.

8.2.3.4.9 Labile and Refractory Splitting of Dissolved Organic Nitrogen

A number of water quality models, including the CE-QUAL-ICM application to the St.
Johns River, Florida (Tillman et al., 2004) split dissolved organic phosphorous into labile
and refractory components. The refractory component equation is

∂RDON
∂ t

= ∑
x=c,d,g,m

(FNRDX BMX +FNRDPX PRX) ANCX BX

−KRDONRDON +
WRDON

V
(8.82)

where

RDON is the concentration of dissolved organic nitrogen (g N/m3),

FNRDx is the fraction of metabolized nitrogen by algal group x produced as dissolved
organic nitrogen,

FNRDP is the fraction of predated nitrogen produced as dissolved organic nitrogen,

KRDON is the mineralization rate of dissolved organic nitrogen (1/day), and

WRDON is the external loads of dissolved organic nitrogen (g N/day).

The equation for the labile component is

∂LDON
∂ t

= ∑
x=c,d,g,m

(FNLDX BMX +FNLDPX PRX) ANCX BX

+KRPONRPON +KLPONLPON−KLDONLDON +
∂

∂Z
(WSLPLPON)+

WDON
V

(8.83)

where
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DON is the concentration of dissolved organic nitrogen (g N/m3),

FNDx is the fraction of metabolized nitrogen by algal group x produced as dissolved
organic nitrogen,

FNDP is the fraction of predated nitrogen produced as dissolved organic nitrogen,

KDON is the mineralization rate of dissolved organic nitrogen (1/day), and

WDON is the external loads of dissolved organic nitrogen (g N/day).

Equations (8.82) and (8.83) follow from Tillman et al. (2004), but are not currently
implemented in the EFDC+ water quality model.

8.2.3.5 Silica

The present model has two state variables for silica; particulate biogenic silica and
available silica.

8.2.3.5.1 Particulate Biogenic Silica

Sources and sinks for particulate biogenic silica included in the model are (Figure 8.1):

1. Diatom basal metabolism and predation,

2. Dissolution to available silica,

3. Settling, and

4. External loads.

The kinetic equation describing these processes is:

∂SU
∂ t

= (FSPd BMd +FSPP PRd)ASCd Bd−KSUASU +
∂

∂Z
(WSdSU)+

WSU
V

(8.84)

where,

SU is the concentration of particulate biogenic silica (g Si/m3),

FSPd is the fraction of metabolized silica by diatoms produced as particulate biogenic
silica,

FSPP is the fraction of predated diatom silica produced as particulate biogenic silica,

ASCd is the silica-to-carbon ratio of diatoms (g Si per g C),

KSUA is the dissolution rate of particulate biogenic silica (1/day), and

WSU is the external loads of particulate biogenic silica (g Si/day).
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8.2.3.5.2 Available Silica

Sources and sinks for available silica included in the model are:

1. Diatom basal metabolism, predation, and uptake,

2. Settling of sorbed (particulate) available silica,

3. Dissolution from particulate biogenic silica,

4. Sediment-water exchange of dissolved silica for the bottom layer only, and

5. External loads.

The kinetic equation describing these processes is:

∂SA
∂ t

= (FSId BMd +FSIP PRd−Pd)ASCd Bd +KSUASU+

∂

∂Z
(WST SSSAp)+

BFSAd
∆Z

+
WSA

V
(8.85)

where,

SA = SAd +SAp is the concentration of available silica (g Si/m3),

SAd is the dissolved available silica (g Si/m3),

Sap is the particulate (sorbed) available silica (g Si/m3),

FSId is the fraction of metabolized silica by diatoms produced as available silica,

FSIP is the fraction of predated diatom silica produced as available silica,

BFSAd is the sediment-water exchange flux of available silica (g Si/m2/day), applied
to bottom layer only, and

WSA is the external loads of available silica (g Si/day).

In equation (8.85), if total active metal is chosen as a measure of sorption site, the settling
velocity of total suspended solid WST SS, is replaced by that of particulate metal WSs.

8.2.3.5.3 Available Silica System

Analysis of Chesapeake Bay monitoring data indicates that silica shows similar be-
havior as phosphate in the adsorption-desorption process (Cerco and Cole, 1993). As in
phosphate, therefore, available silica is defined to include both dissolved and sorbed frac-
tions. Treatment of available silica is the same as total phosphate, and the same method to
partition dissolved and sorbed phosphate is used to partition dissolved and sorbed available
silica:
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SAp =

(
KSApSORPS

1+KSApSORPS

)
SA (8.86)

SAd =

(
1

1+KSApSORPS

)
SA (8.87)

SORPS = T SS or TAMp (8.88)

SA = SAp+SAd (8.89)

where, KSAp is the empirical coefficient relating available silica sorption to total suspended
solid (per g/m3) or particulate total active metal (per mol/m3) concentration.

8.2.3.5.4 Effect of Diatoms on Silica

In equations (8.84) and (8.86), those terms expressed as a function of diatom biomass
(Bd) account for the effects of diatoms on silica. As in phosphorus and nitrogen, both basal
metabolism (respiration and excretion) and predation are considered, and thus formulated,
to contribute to particulate biogenic and available silica. That is, diatom silica released
by both basal metabolism and predation are represented by distribution coefficients (FSPd ,
FSId , FSPP, and FSIP). The sum of two distribution coefficients for basal metabolism
should be unity and so is that for predation. Diatoms require silica as well as phosphorus
and nitrogen, and diatom uptake of available silica is represented by (−PdAASCdABd) in
equation (8.85).

8.2.3.5.5 Dissolution

The term (−KSUAASU) in equation (8.84) and its corresponding term in equation (8.85)
represent dissolution of particulate biogenic silica to available silica. The dissolution rate
is expressed as an exponential function of temperature

KSUA = KSU exp(KTSUA (T −T RSUS)) (8.90)

where,

KSU is the dissolution rate of particulate biogenic silica at T RSUA (1/day),

KTSUA is the effect of temperature on dissolution of particulate biogenic silica (1/◦C),
and

T RSUA is the reference temperature for dissolution of particulate biogenic silica (◦C).
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8.2.3.6 Chemical Oxygen Demand

In the present model, chemical oxygen demand is the concentration of reduced sub-
stances that are oxidizable through inorganic means. The source of chemical oxygen de-
mand in saline water is sulfide released from sediments. A cycle occurs in which sulfate
is reduced to sulfide in the sediments and reoxidized to sulfate in the water column. In
fresh water, methane is released to the water column by the sediment process model. Both
sulfide and methane are quantified in units of oxygen demand and are treated with the same
kinetic formulation. The kinetic equation, including external loads, if any, is:

∂COD
∂ t

=−
(

DO
KHCOD +DO

)
KCODCOD+

BFCOD
∆Z

+
WCOD

V
(8.91)

where,

COD is the concentration of chemical oxygen demand (g O2− equivalents/m2/day),

KHCOD is the half-saturation constant of dissolved oxygen required for oxidation of
chemical oxygen demand (g O2/m3),

KCOD is the oxidation rate of chemical oxygen demand (1/day),

BFCO is the sediment flux of chemical oxygen demand (g O2− equivalents/m2/day),
applied to bottom layer only, and

WCOD is the external loads of chemical oxygen demand (g O2− equivalents/day).

An exponential function is used to describe the temperature effect on the oxidation rate
of chemical oxygen demand:

KCOD = KCDexp(KTCOD (T −T RCOD)) (8.92)

where

KCD is the oxidation rate of chemical oxygen demand at T RCOD (1/day),

KTCOD is the effect of temperature on oxidation of chemical oxygen demand (1/◦C),
and

T RCOD is the reference temperature for oxidation of chemical oxygen demand (◦C).

8.2.3.7 Dissolved Oxygen

Sources and sinks of dissolved oxygen in the water column included in the model are
(Figure 8.1):

1. Algal photosynthesis and respiration,

2. Nitrification,

3. Heterotrophic respiration of dissolved organic carbon,
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4. Oxidation of chemical oxygen demand,

5. Surface reaeration for the surface layer only,

6. Sediment oxygen demand for the bottom layer only, and

7. External loads.

The kinetic equation describing these processes is:

∂DO
∂ t

= ∑
x=c,d,g,m

(
(1+0.3(1−PNx))Px− (1−FCDx)

(
DO

KHRx +DO

)
BMx

)
AOCR Bx

−AONT Nit NH4−AOCR KHRDOC−
(

DO
KHCOD +DO

)
KCODCOD

+KR (DOS−DO)+
SOD
∆Z

+
WDO

V
(8.93)

where

AONT is the mass of dissolved oxygen consumed per unit mass of ammonium nitrogen
nitrified (4.33 g O2 per g N),

AOCR is the dissolved oxygen-to-carbon ratio in respiration (2.67 g O2 per g C),

KR is the reaeration coefficient (1/day): the reaeration term is applied to the surface
layer only,

DOs is the saturated concentration of dissolved oxygen (g O2/m3),

SOD is the sediment oxygen demand (g O2/m2/day), applied to the bottom layer only;
positive is to the water column,

WDO is the external loads of dissolved oxygen (g O2/day), and

PNx is the preference for ammonia uptake by algae group x (0 < PNx < 1).

The remainder of this section explains the effects of algae, nitrification, and surface
reaeration.

8.2.3.7.1 Effect of Algae on Dissolved Oxygen

The first line on the RHS of equation (8.93) accounts for the effects of algae on
dissolved oxygen. Algae produce oxygen through photosynthesis and consume oxygen
through respiration. The quantity produced depends on the form of nitrogen utilized for
growth. Equations describing production of dissolved oxygen are (Morel, 1983);

106CO2 +16NH+
4 +H2PO−4 +106H2O→ protoplasm+106O2 +15H+ (8.94)
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106CO2 +16NO−3 +H2PO−4 +122H2O→ protoplasm+138O2 (8.95)

When ammonium is the nitrogen source, one mole of oxygen is produced per mole
of carbon dioxide fixed. When nitrate is the nitrogen source, 1.3 moles of oxygen are
produced per mole of carbon dioxide fixed. The quantity (1.3−0.3APNx), in the first term
of equation (8.93) is the photosynthesis ratio and represents the molar quantity of oxygen
produced per mole of carbon dioxide fixed. It approaches unity as the algal preference for
ammonium approaches unity.

The last term in the first line of equation (8.93) accounts for the oxygen consumption
due to algal respiration. A simple representation of respiration process is:

CH2O+O2 =CO2 +H2O (8.96)

from which, AOCR = 2.67 g O2 per g C.

8.2.3.7.2 Effect of Nitrification on Dissolved Oxygen

The stoichiometry of nitrification reaction equation (8.77), indicates that two moles of
oxygen are required to nitrify one mole of ammonium into nitrate. However, cell synthesis
by nitrifying bacteria is accomplished by the fixation of carbon dioxide so that less than
two moles of oxygen are consumed per mole ammonium utilized (Wezenak and Gannon,
1968), i.e. AONT = 4.33 g O2 per g N.

8.2.3.7.3 Effect of Surface Reaeration on Dissolved Oxygen

The reaeration rate of dissolved oxygen at the air-water interface is proportional to the
oxygen gradient across the interface (DOs−DO), assuming that the air is saturated with
oxygen. The saturated concentration of dissolved oxygen, which decreases as temperature
and salinity increase, is specified using an empirical formula (Genet et al., 1974);

DOs = 14.5532−0.38217T +5.4258×10−3T 2

−CL
(

1.665×10−4−5.866×10−6T +9.796×10−8T 2
)

(8.97)

CL = S/1.80655 is the chloride concentration (mg/l).
The reaeration coefficient includes the effect of turbulence generated by bottom friction

(O’Connor and Dobbins, 1958) and that by surface wind stress (Banks and Herrera, 1977):

Kr =
1

∆z

(
Kro

√
ueq
heq

+Wrea

)
(KTr)

T−20 (8.98)

where,

Kro = 3.933 is the proportionality constant in SI unit,
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ueq = ∑(ukV k)/3(V k) is the weighted velocity over cross-section (m/s),

heq = ∑(V k)/B is the weighted depth over cross-section (m),

B is the width at the free surface (m), and

Wrea is the wind-induced reaeration (m/day).

Wrea = 0.728
√

Uw−0.317Uw +0.0372U2
w (8.99)

where,

Uw is the wind speed (m/s) at the height of 10 m above surface, and

KTr is the constant for temperature adjustment of dissolved oxygen reaeration rate.

8.2.3.7.4 Simplified Equation for Dissolved Oxygen

The simplified DO equation for KHRx and FCDx equal to zero is

∂DO
∂ t

= ∑
x=c,d,g,m

((1.3−0.3PNx)Px−BMx)AOCR Bx−

AONT Nit NH4−AOCR KHR DOC−
(

DO
KHCOD +DO

)
KCODCOD+

KR (DOS−DO)+
SOD
∆Z

+
WDO

V
(8.100)

which is consistent with the equation (8.93).

8.2.3.8 Total Active Metal

The present model requires simulation of total active metal for adsorption of phosphate
and silica if that option is chosen. The total active metal state variable is the sum of iron
and manganese concentrations, both particulate and dissolved. In the model, the origin of
total active metal is benthic sediments. Since sediment release of metal is not explicit in
the sediment model (see Chapter 6), release is specified in the kinetic portion of the water
column model. The only other term included is settling of the particulate fraction. Then
the kinetic equation for total active metal, including external loads, if any, may be written
as:

∂TAM
∂ t

=

(
KHbm f

KHbm f +DO

)
(exp(Ktam(T −Ttam)) )

BFTAM
∆z

+
∂

∂Z
(WSsTAMp)+

WTAM
V

(8.101)

where,
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TAM = TAMd +TAMp is the total active metal concentration (mol/m3),

TAMd is the dissolved total active metal (mol/m3),

TAMp is the particulate total active metal (mol/m3),

KHbm f is the dissolved oxygen concentration at which total active metal release is half
the anoxic release rate (g O2/m3),

BFTAM is the anoxic release rate of total active metal (mol/m2/day), applied to the
bottom layer only,

Ktam is the effect of temperature on sediment release of total active metal (1/◦C),

Ttam is the reference temperature for sediment release of total active metal (◦C),

WSs is the settling velocity of particulate metal (m/day), and

WTAM is the external loads of total active metal (mol/day).

In estuaries, iron and manganese exist in particulate and dissolved forms depending
on dissolved oxygen concentration. In oxygenated water, most of the iron and manganese
exist as particulate while under anoxic conditions, large fractions are dissolved, although
solid-phase sulfides and carbonates exist and may predominate. The partitioning between
particulate and dissolved phases is expressed using a concept that total active metal con-
centration must achieve a minimum level, which is a function of dissolved oxygen, before
precipitation occurs:

TAMd = min(TAMdmxexp(−Kdotam DO) , TAM) (8.102)

TAMp = TAM−TAMd (8.103)

where

TAMdmx is the solubility of total active metal under anoxic conditions (mol/m3), and

Kdotam is the constant that relates total active metal solubility to dissolved oxygen
(per g O2/m3).

8.2.3.9 Fecal Coliform Bacteria

The fecal coliform variable is completely decoupled from the rest of the water quality
model and is included in the model for convenience in Total Maximum Daily Load (TMDL)
applications. Fecal coliform bacteria are indicative of organisms from the intestinal tract of
humans and other animals and can be used as an indicator bacteria as a measure of public
health (Thomann and Mueller, 1987). In the present model, fecal coliform bacteria have
no interaction with other state variables, and have only one sink term, die-off. The kinetic
equation, including external loads, may be written as:
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∂FCB
∂ t

= KFCB
(
T FCBT−20)FCB+

WFCB
V

(8.104)

where,

FCB is the bacteria concentration (MPN per 100ml),

KFCB is the first order die-off rate at 20 ◦C (1/day),

T FCB is the effect of temperature on decay of bacteria (1/◦C), and

WFCB is the external loads of fecal coliform bacteria (MPN per 100ml m3/day).

8.2.4 Settling, Deposition and Resuspension of Particulate Matter

The kinetic equations for particulate matter, including particulate organic matter, total
phosphate, the two silica state variables, and total active metal contain settling term. A
representative generic equation is

∂PM
∂ t

=
∂

∂ z
(WSPMPM)+PMSS (8.105)

where, PMSS represents the additional terms in the equation. Integration of equation
(8.105) over the bottom layer gives

∂PM1

∂ t
=

WSPM

∆Z1
PM2−

WSPM

∆Z1
PM1 +PMSS1 (8.106)

The original CE-QUAL-ICM and EFDC+ water quality models were formulated with
settling velocities representing long-term average net settling. In the subsequent applica-
tion of CE- QUAL-ICM to Florida Bay (Cerco et al., 2000), the resuspension or erosion
of particulate material form the sediment bed was added and has also been added to the
EFDC+ water quality model.

The EFDC+ model allows the use of the net settling formulation (8.106) and a formu-
lation allowing resuspension with equation (8.106) modified

∂PM1

∂ t
=

WSPOM

∆Z1
PM2−

PdepPMWSPM

∆Z1
PM1 +

EPM

∆Z1
+PMSS1 (8.107)

to include a probability of deposition factor and an erosion term EPM with units of mass per
unit time-unit area. For EFDC+ model applications with erosion of a particulate material
in the water quality module, sediment transport must be active in the hydrodynamic model.
The erosion term is then defined by

EPM =

(
PMbed

SEDbed

)
max(JERO, 0) (8.108)

where,
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PMbed is the particulate material concentration in bed (g PM/m2 or g PM/m3),

SEDbed is the concentration finest sediment class in bed (g PM/m2 or g PM/m3),

PdepPM is the probability of deposition of the specific particulate matter variable (0 ≤
PdepPM ≤ 1), and

JERO is the mass rate of erosion or resuspension of the finest sediment class
(g SED/day/m2).

Usage of the ratio of the water quality model particulate state variable concentration
to the finest sediment size class concentration rather than the total solids concentration is
based on the reality that finest sediment class (generally less than 63µm) includes both
inorganic and organic material and field observations of settling, deposition and resuspen-
sion, when available for model calibration account for this. If simultaneous deposition and
erosion are not permitted, the probability of deposition is defined as zero when the sediment
erosion flux is greater than zero.

In conclusion, it is noted that in the CE-QUAL-ICM documentation which includes
particulate matter resuspension (Cerco et al., 2000), resuspension is explicitly included in
various state variable equations, while in this document it is included implicitly as described
in the current section.

8.2.5 Method of Solution for Kinetics Equations

The kinetic equations for the 20 state variables, excluding fecal coliform, in the EFDC+
water column water quality model can be expressed in a system of 20 × 20 partial dif-
ferential equations in each model cell, after linearizing some terms, mostly Monod type
expressions:

∂C

∂ t
=KC+

∂

∂ z
(WC)+R (8.109)

where,

C is the vector of the state variables in [ML−3],

K is a matrix in [T−1],

W is in [LT−1], and

R is a vector in [ML−3T−1].

The ordering of variables follows that in Table 8.1 which results in K being lower
triangular. Integrating (8.109) over layer k, gives
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Ck

∂ t
=K1kCk +δkK2kCk+1 +Rk

K1k =Kk−
1
∆k

W

K2k =
1
∆k

W

(8.110)

which indicates that the settling of particulate matter from the overlying cell acts as an
input for a given cell. For the layer of cells adjacent to the bed, the erosion term in (8.107)
is included in the vector R. The matrices and vectors in (8.109) and (8.110) are defined
in Appendix A of (Park et al., 1995). The layer index k increases upward with KC vertical
layers; k = 1 is the bottom layer and k = KC is the surface layer. Then δk = 0 for k = KC;
otherwise, δk = 1. The matrix K2 is a diagonal matrix, and the non-zero elements account
for the settling of particulate matter from the overlying cell.

Equation (8.110) is solved using a generalized trapezoidal scheme over a time step of
θ , which may be expressed as:

Cn+1
k −Cn

k = λθ
(
K1n

kC
n+1
k +δkK2n

kC
n+1
k+1 +Rn+1

k

)
+(1−λ )θ

(
K1n

kC
n
k +δkK2n

kC
n
k+1 +Rn

k
)

(8.111)

or

(I−λθK1n
k)C

n+1
k = (I+(1−λ )θK1n

k)C
n
k+

θδkK2n
k
(
λCn+1

k+1 +(1−λ )Cn
k+1
)
+θ

(
λRn+1

k +(1−λ )Rn
k
)

(8.112)

where,

λ is an implicitness factor (0≤ λ ≤ 1),

θ = 2 ·m ·∆t is the time step for the kinetic equations and

I is the identity matrix; the superscripts n and n+ 1 designate the variables before
and after being adjusted for the relevant kinetic processes. Since equation (8.110)
is solved from the surface layer downward, the term with Cn+1

k+1 is known for the
kth layer and thus placed on the RHS. In equation (8.111), inversion of a matrix
can be avoided when the 20 state variables are solved in the order given in Table
8.1.
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8.3. Rooted Aquatic Plants Formulation

Rooted macrophyte beds are commonly observed along the banks of many rivers and
the accuracy of a water quality model may be improved by simulating submerged aquatic
vegetation (epiphytic algae and macrophytes) if a waterbody has documented macrophyte
occurrences. EFDC+’s generic Rooted Aquatic Plant and Epiphyte Algae Sub-Model
(RPEM) uses kinetic mass balance equations for rooted plant shoots, roots and epiphyte
algae growing on the shoots. The user may enable or disable a variety of combinations
for RPEM, including enabling simulation of rooted plants or epiphytes; enabling epiphytes
growing on rooted plants; enabling the RPEM – Water Column Nutrient Interaction; and
enabling RPEM – Sediment Diagenesis Interaction.

The state variables in the sub-model are rooted plant shoots, roots, epiphyte algae
biomass and rooted plant shoot detritus biomass. The kinetic mass balance of these vari-
ables depends mainly on production, respiration and non-respiration loss rates. These rates
in turn are mainly controlled by nutrients, carbon, oxygen, light field and temperature.

8.3.1 State Variable Equations

The kinetic mass balance equations for rooted plant shoots, roots and epiphyte algae
growing on the shoots are

∂ (RPS)
∂ t

= ((1−FPRPR) ·PRPS−RRPS−LRPS)RPS+ JRPRS (8.113)

∂ (RPR)
∂ t

= FPRPR ·PRPS ·RPS− (RRPR +LRPR)RPR+ JRPRS (8.114)

∂ (RPE)
∂ t

= (PRPE −RRPE −LRPE)RPE (8.115)

where,

t is the time (day),

RPS (Ta, Ha) is the Rooted Plant Shoot Biomass (g C/m2),

FPRPR (χTa, χHa) is the fraction of production directly transferred to roots (0 <
FPGR < 1),

PRPS (gTa, gHa) is the production rate for plant shoots (1/day),

RRPS (rT a, rHa) is the respiration rate for plant shoots (1/day),

LRPS (mTa, mHa) is the non-respiration loss rate for plant shoots (1/day),

JRPRS (χT bTb, χHbHb) is the carbon transport positive from roots to shoots
(g C/m2/day) ,

RPR (Tb, Hb) is the Rooted Plant Root Biomass (g C/m2),
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RRPR (rT b, rHb) is the respiration rate for plant roots (1/day),

LRPR (mT b, mHb) is the non-respiration loss rate for plant roots (1/day) ,

RPE (E) s the Rooted Plant Epiphyte Biomass (g C/m2),

PRPE (gE) is the production rate for epiphytes (1/day),

RPRE(rEE) is the respiration rate for epiphytes (1/day), and

LRPE (rTa +mE) is the non-respiration loss rate for epiphytes (1/day).

For comparison, Table 8.3 and Table 8.4 show generic and Florida Bay sea grass model
parameters.

Table 8.3. Generic and Florida Bay Sea Grass Model Parameters for Thalassia and Halodule

Parameter Dimension Generic Thalassia Halodule

FPRPR
(χTa, χHa)

none constant 0.4 0.34

PRPS
(gTa, gHa)

1/day Function of
N, P, Light,
Temp, Salt

Function of N,
P, Light, Temp,
Salt

Function of N, P,
Light, Temp,
Salt

RRPS
(rTa, rHa)

1/day Function of
Temperature

0.01 (base)
Temperature
Function

0.029 (base)
Temperature
Function

LRPS
(mTa, mHa)

1/day Function of
Temperature

0.001 (base)
Temperature
Function

0.004 (base)
Temperature
Function

RRPR
(rT b, rHb)

1/day Function of
Temperature

0.0025 (base)
Temperature
Function

0.011(base)
Temperature
Function

LRPR
(mT b, mHb)

1/day Function of
Temperature

0.0001 (base)
Temperature
Function

0.0004 (base)
Temperature
Function

JRPRS
(χT bT b, χHbHb)

g C/m2/day KRPRS ·RPR χT bT b
(χT b = 0.0005)

χHbHb
(χHb = 1×10−5)

An additional state variable is also added to account for shoot detritus at the bottom of
the water column

∂ (RPD)

∂ t
= FPRSD ·PRPS ·RPS−LRPDRPS (8.116)

where,
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Table 8.4. Generic and Florida Bay Sea Grass Model Parameters for Epiphytes

Parameter Dimension Generic Epiphytes

PRPE(gE) none Function of N, P,
Light, Temp, Salt

Function of N, P,
Light, Temp, Salt

RRPE(rEE) 1/day Function of
Temperature

rEErE =
(0.01m2/gm−day)

LRPE(mTa +mEE) 1/day constant mTa +mEErE =
(0.05m2/gm−day)

RP is the Rooted Plant Shoot Detritus Biomass (g C/m2),

FRPSD is the fraction of shoot loss to detritus (0< FRPSD<1), and

LRPD is the decay rate of detritus (1/day).

The Florida Bay sea grass model does not include this variable.

8.3.1.1 Production Rate for Plant Shoots

The production or growth rate for plant shoots is given by

PRPS = PMRPS · f1W (N) · f1B (N) · f2 (I) · f3 (T ) · f4 (S) · f5 (RPS) (8.117)

where,

PMRPS (VT , VH) is the maximum growth rate under optimal conditions for plant shoots
(1/day),

f1(N) is the effect of suboptimal nutrient concentration (0≤ f1 ≤ 1),

f2(I) is the effect of suboptimal light intensity (0≤ f2 ≤ 1),

f3(T ) is the effect of suboptimal temperature (0≤ f3 ≤ 1),

f4(S) is the effect of salinity on fresh water plant shoot growth (0≤ f4 ≤ 1), and

f5(RPS) is the carrying capacity effect on shoot growth (0≤ f5 ≤ 1).

Maximum growth rates for the Florida Bay sea grass model are shown in Table 8.5.

Table 8.5. Maximum Growth Rate

Parameter Units Generic Thalassia Halodule

PMRPS (VT , VH) /day constant 0.208 0.29
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8.3.1.1.1 Effect of Nutrients on Production

Nutrient limitation is specified in terms of both water column and bed nutrient levels by

f1W (N) = min
(

(NH4+NO3)w
KHNRPS +(NH4+NO3)w

,
PO4dw

KHPRPS +PO4dw

)
f1b (N) = min

(
(NH4+NO3)b

KHNRPS +(NH4+NO3)b
,

PO4db

KHPRPS +PO4db

) (8.118)

where,

NH4 is the ammonium nitrogen concentration (g N/m3),

NO3 is the nitrate + nitrite nitrogen concentration (g N/m3),

KHNRPS is the half-saturation constant for nitrogen uptake from water column
(g N/m3),

KHNRPR (KT N ,KHN) is the half-saturation constant for nitrogen uptake from bed
(g N/m3),

PO4d is the dissolved phosphate phosphorus concentration (g P/m3),

KHPRPS is the half-saturation constant for phosphorus uptake from water column
(g P/m3), and

KHPRPR (KT P,KHP) is the half-saturation constant for phosphorus uptake from bed
(g P/m3).

Table 8.6. List of nutrient limitation parameters for the Florida Bay sea grass model

Parameter Units Generic Thalassia Halodule

KHNRPS gm/m3(mg/l) constant 0.0 0.0

KHNRPR gm/m3(mg/l) constant
0.04 µM

0.00056 mg/l
0.04 µM

0.00056 mg/l

KHPRPS gm/m3(mg/l) constant 0.0 0.0

KHPRPR gm/m3(mg/l) constant
0.04 µM

0.0031 mg/l
0.04 µM

0.0031 mg/l
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8.3.1.1.2 The Light Field

The light field in the water column is governed by

∂ I
∂Z∗

=−Kess · I (8.119)

where,

I is the light intensity (Langley/day),

Kess is the light extinction coefficient (1/m), and

Z∗ is the depth below the water surface (m).

With the light extinction coefficient being a function of the depth below the water surface.
Integration of (8.119) gives

I = Iwsexp
(
−
∫ Z∗

0
Kess ·dZ∗

)
(8.120)

The light intensity at the water surface Iws, is given by

Iws = Iomin(exp(−Kesh · (HRPS−H)) ,1) (8.121)

where,

Io is the light intensity at the top of the emergent shoot canopy for emergent shoots
or the light intensity at the water surface for submerged shoots (W/m2),

Keme is the light extinction coefficient for emergent shoots (1/m),

HRPS is the shoot height (m), and

H is the water column depth (m).

For submerged shoots, it is assumed that the light extinction coefficient in the water column
above the shoot canopy is given by

Kessac = Keb +KeISS · ISS+KeV SS ·V SS+KeChl

M

∑
m=1

(
Bm

CChlm

)
(8.122)

And the light extinction coefficient in the water column within the canopy is given by

Kessic = Keb +KeISS · ISS+KeV SS ·V SS+KeChl

M

∑
m=1

(
Bm

CChlm

)
+KeRPS ·RPS (8.123)

where,

190 EFDC+ Theory Document



8. EUTROPHICATION MODULE

Keb is the background light extinction (1/m),

KeISS is the light extinction coefficient for inorganic suspended solid (1/m per g/m3),

ISS is the inorganic suspended solid concentration (g/m3) provided from the hydro-
dynamic model,

KeV SS is the light extinction coefficient for volatile suspended solid (1/m per g/m3),

V SS is the volatile suspended solid concentration (g/m3) provided from the water qual-
ity model,

CChlRPE is the carbon-to-chlorophyll ratio for epiphytes (g C per mg Chl),

KeChl is the light extinction coefficient for algae chlorophyll (1/m per mg Chl/m3),

Bm is the concentration of algae group m (g C per ml),

CChlm is the carbon-to-chlorophyll ratio in algal group m (g C per mg Chl),

KeRPS is the light extinction coefficient for rooted plant shoots (1/m per gm C/m2), and

RPS is the concentration of plant shoots (g C per m2).

The forms of equations (8.122) and (8.123) readily allow for the inclusion of algae
biomass into the volatile suspended solids or vice-versa. The form of equation (8.123)
assumes that the shoots are primarily self shading and that epiphyte effect are manifest on
the shoot surface.

The solutions of equation (8.120) above and in the canopy are

I = Iwsexp(−Kessac ·Z∗) ; 0≤ Z∗ ≤ H−HRPS (8.124)
I = Ict · exp(−Kessic · (Z∗−H +HRPS)) (8.125)

Ict = Iws · exp(−Kessac · (H−HRPS)) (8.126)
H−HRPS ≤ Z∗ ≤ H (8.127)

Since rooted plants are represented as carbon mass per unit area, the average light
intensity over the shoot canopy is an appropriate light measure. For emergent shoots, the
average of equation (8.124) over the water column depth, noting that H = HRPS, is

Iicwa =
Iws

Kessic ·H
(1− exp(−Kessac ·H) ) (8.128)

For submerged shoots, the average over the canopy is

Iicwa =
Iws

Kessic ·HRPS
exp(−Kessac · (H−HRPS)) · (1− exp(−Kessic ·HRPS) ) (8.129)

where Iicwa in both equation (8.128) and equation (8.129) is the average in canopy water
column light intensity.
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When epiphytes grow on the shoot surface, the light intensity at the shoot surface is
further reduced according to

IRPS = Iicwexp(−KeRPE ·RPE) (8.130)

where,

IRPS is the light intensity on the plant shoots (W/m2),

Iicw is the average water column light intensity in the shoot canopy (W/m2), and

KeRPE is the light extinction coefficient for epiphyte (m2 per gm C).

For the Florida Bay sea grass model, the epiphyte light extinction coefficient is given
by

KeRPE = 0.11
δRPE

∑Nspecies

(
2·RPS·δRPS

WRPS

) (8.131)

where,

δ RPE is the Epiphyte dry mass to carbon mass ratio,

δ RPS is the rooted plant shoot dry mass to carbon mass ratio, and

W RPS is the rooted plant shoot mass per unit shoot area.

Values of these parameters for the Florida Bay model are listed in the Ta-
ble 8.7. It is noted that the expression in equation (8.131) is not dimen-
sionally homogeneous with the numerical coefficient 0.11 having implied units of
(cm2 lea f sur f acearea )/( mg dry weight). Equation (8.131) can be made dimensionally
consistent by use of the alternative form

KeRPE ·RPE =
RPE

∑Nspecies (KRPSE ·RPS)
(8.132)

Where the dimensionless parameter KRPSE is also defined in Table 8.7

Table 8.7. Epiphyte Light Attenuation Parameter for Florida Bay Sea Grass Model

Parameter Units Thalassia Halodule

δRPE Dry mass/ Carbon mass 9 9
δRPS Dry mass/ Carbon mass 2.94 2.4
WRPS Mg dry mass/ C-m2 leaf area 1.7 2
KRPSE Dimensionless 3.49 2.42

Using equations (8.130) and (8.124), the light intensity on the shoot surface can be
expressed as
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IRPS = Iws · exp
(
−Kessac · (H−HRPS)
−KeRPE ·RPE

)
· exp(−Kessic · (Z∗−H +HRPS)) (8.133)

While equations (8.130) and (8.129) give the canopy average light intensity on the shoot
surface

IRPSA =
Iws

Kessic ·HRPS
exp
(
−Kessac · (H−HRPS)
−KeRPE ·RPE

)
· (1− exp(−Kessic ·HRPS) ) (8.134)

8.3.1.1.3 Effects of Light on Growth

The EFDC+ generic rooted plant model includes three options to specify the effect of
light on rooted plant growth. The first option is based on Steele’s equation (Steele, 1962)

f2 (I) =
I

IRSPopt
exp
(

1− I
IRSPopt

)
(8.135)

which can be applied in terms of the average light intensity reaching the shoots to give

f2 (I) =
IRPSA

IRSPopt
exp
(

1− IRPSA

IRSPopt

)
(8.136)

or due to its unique mathematical form directly averaged over the shoot canopy. The aver-
age is given by

f2avg (I) =
F2

HRPS

∫ H

H−HRPS

exp
(

1−Kessic · (Z∗−H +HRPS)
−F2 · exp(−Kessic · (Z∗−H +HRPS))

)
dZ∗ (8.137)

With the results being

f2avg (I) =
exp(1)

Kessic ·HRPS
[exp(−F2 · exp(−Kessic ·HRPS) ) − exp(F2) ] (8.138)

F2 =
Iws

IRSPopt
· exp

(
−Kessac · (H−HRPS)
−KeRPE ·RPE

)
PE) c\ (8.139)

The second option for the effect of light on growth or production is a Monod type
formulation adapted from the Chesapeake Bay SAV model

f2 (I) =
(

IRPS

IRPS +KHIRPS

)
(8.140)

where,
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IRPS is the light intensity at the shoot surface (W/m2), and

KHIRPS is the shoot surface light intensity half saturation (W/m2).

Equation (8.140) can be applied using the average light intensity over the shoot canopy
or averaged over the shoot canopy to give

f2avg (I) =
1

Kessic ·H
ln
(

KHI + Iwsexp(KeRPE ·RPE)
KHI + Iwsexp(−Kessic ·H−KeRPE ·RPE)

)
(8.141)

For an emergent canopy and

f2avg (I) =
1

Kessic ·HRSP
ln
(

KHI + Ictexp(−Kessic · (H−HRSP)−KeRPE ·RPE)
KHI + Ictexp(−Kessic ·H−KeRPE ·RPE)

)
(8.142)

for a submerged canopy.
The final option is adapted from the Florida Bay sea grass model and is

f2 (I) = tanh
(

IRPSavg

lRSP

)
(8.143)

where the average intensity is used since a closed analytical average of this equation is not
possible. Values for the parameters in equations (8.140) and (8.143) for Florida Bay are
listed in Table 8.8.

Table 8.8. Light Limitation Parameters for Equations (8.140) and (8.143)

Parameter Units Thalassia Halodule

KHIRPS W/m2 142(444 µmoles/m2− s) 82(255 µmoles/m2− s)
lRPS W/m2 130(407 µmoles/m2− s) 102(319 µmoles/m2− s)

Note on conversion: the conversion factor for 1 µmoles/m2− s to 0.3 to 0.34 W/m2.
Conversions in table are based on 0.32.

8.3.1.1.4 Effect of Temperature on Shoot Growth

The effect of temperature on shoot growth is given by a Gaussian function

f3 (T ) =


exp
(
−KT P1RPS[T −T P1RPS]

2
)

i f T ≤ T P1RPS

1 i f T P1RPS < T < T P2RPS

exp
(
−KT P2RPS[T −T P2RPS]

2
)

i f T ≥ T P1RPS

(8.144)

where,
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T is the temperature (◦C) provided from the hydrodynamic model,

T P1RPS < T < T P2RPS is the optimal temperature range for shoot production (◦C),

KT P1RPS is the effect of temperature below T M1RPS on shoot production (1/◦C2), and

KT P2RPS is the effect of temperature above T M2RPS on shoot production (1/◦C2).

or an exponential function.

f3 (T ) = exp(KT PRPS [T −T PREFRPS]) (8.145)

where,

T PREFRPS is the reference temperature for shoot production (◦C), and

KT PRPS is the effect of temperature on shoot production (1/◦C).

With parameters for the Florida Bay sea grass model given in Table 8.9.

Table 8.9. Parameters for Temperature Effect on Growth for Equation (8.145)

Parameter Units Thalassia Halodule

T PREFRPS
◦C 28 31

KT PRPS 1/◦C 0.07 0.07

8.3.1.1.5 Effect of Salinity

The effect of salinity on fresh water plant shoot growth is given by

f4 (S) =
STOXS2

STOXS2 +S2 (8.146)

where,

STOXS is the salinity at which growth is halved (ppt), and

S is the salinity in water column (ppt) provided from the hydrodynamic model

8.3.1.1.6 Effect of Rooted Plant Density

The effect of rooted plant density on growth is given by

f5 (RPS) = 1−

(
∑

species

RPS
RPSsat

)2

(8.147)

where RPSsat is the density saturation parameter (g C/m2).
The summation indicates when multiple species are simulated, the total density of all

species affects each individual species
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Table 8.10. Parameters for Plant Density Effect on Growth for Equation (8.147)

Parameter Units Thalassia Halodule

RPSsat (g C/m2) 400 667

8.3.1.2 Respiration Rate for Plant Shoots

The respiration rate for plant shoots is assumed to be temperature dependent

RRPS = RREFRPS · exp(KT RRPS [T −T RREFRPS]) (8.148)

where,

RREFRPS is the reference respiration rate for shoots (1/day),

T is the temperature (◦C) provided from the hydrodynamic model,

T RREFRPS is the reference temperature for shoot respiration (◦C), and

KT RRPS is the effect of temperature on shoot respiration (1/◦C2).

Table 8.11. Parameters for Shoot Respiration in Equation (8.148)

Parameter Units Thalassia Halodule

RREFRPS 1/day 0.01 0.029

KT RRPS dimensionless 0.07 0.07

T RREFRPS
◦C 28 31

8.3.1.3 Non-Respiration Loss Rate for Plant Shoots

The non-respiration loss rate for shoots is assumed to be temperature dependent.

LRPS = LREFRPS · exp(KT LRPS [T −T LREFRPS]) (8.149)

where,

LREFRPS is the reference loss rate for shoots (1/day),

T is the temperature (◦C) provided from the hydrodynamic model,

T LREFRPS is the reference temperature for shoot loss (◦C), and

KT LRPS is the effect of temperature on shoot loss (1/◦C2).
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Table 8.12. Parameters for Shoot Mortality of non-respiration loss in (8.149)

Parameter Units Thalassia Halodule

LREFRPS 1/day 0.001 0.004

KLRRPS dimensionless 0.07 0.07

T LREFRPS
◦C 28 28

8.3.1.4 Carbon Transport from Roots to Shoots

The carbon transport from roots to shoots is defined as positive to the shoots. Two
formulations can be utilized; the first is based on observed shoot to root biomass ratios

JRPRS = KRPORS · (RPR−RORS ·RPS) (8.150)

RORS =
RPRobs

RPSobs
(8.151)

where,

KRPORS is the root to shoot transfer rate to follow observed ratio (1/day), and

RORS is the observed ratio of root carbon to shoot carbon (dimensionless).

and the second formulation transfers root carbon to shoot carbon under unfavorable
light conditions for the shoots

JRPRS = KRPRS

(
ISS

ISS + ISSS

)
RPR (8.152)

where,

KRPRS (χT b,χHb) is the root to shoot transfer rate (1/day),

ISS is the solar ratio at shoot surface (W/m2),

ISSS is the half-saturation solar ratio at shoot surface (W/m2).

8.3.1.5 Respiration Rate for Plant Roots

The respiration rate for plant roots is assumed to be temperature dependent

RRPR = RREFRPR · exp(KT RRPR [T −T RREFRPR]) (8.153)

where,

RREFRPR is the reference respiration rate for roots (1/day),
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Table 8.13. Root to Shoot Transport Parameters in Equation (8.152)

Parameter Dimension Generic Thalassia Halodule

KRPORS 1/day constant 0.0005 0.00001

RORS dimensionless constant 0.0000 0.00000

KRPRS 1/day constant 0.0005 0.00001

ISSS W/m2 constant 0.0000 0.00000

T is the temperature (◦C) provided from the hydrodynamic model,

T RREFRPR is the reference temperature for root respiration (◦C), and

KT RRPR is the effect of temperature on shoot respiration (1/◦C2).

Table 8.14. Parameters for Root Respiration in Equation (8.153)

Parameter Units Thalassia Halodule

RREFRPR 1/day 0.0025 0.011

KT RRPR dimensionless 0.07 0.07

T RREFRPR
◦C 28 31

8.3.1.6 Non-Respiration Loss Rate for Plant Roots

The non-respiration loss rate for shoots is assumed to be temperature dependent.

LRPR = LREFRPR · exp(KT LRPR [T −T LREFRPR]) (8.154)

Table 8.15. Parameters for Root Mortality in Equation (8.154)

Parameter Units Thalassia Halodule

LREFRPR 1/day 0.0001 0.0004

KLRRPR dimensionless 0.07 0.07

T LREFRPR
◦C 28 28
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8.3.1.7 Production Rate for Epiphytes

The production or growth rate for epiphytes on plant shoots is given by

PRPE = PMRPE · fw (N) · f2 (I) · f3 (T ) · f4(RPE,RPS) (8.155)

where ,

PMRPE is the maximum growth rate under optimal conditions for plant shoots (1/day),

f 1(N) is the effect of suboptimal nutrient concentration (0≤ f 1≤1),

f 2(I) is the effect of suboptimal light intensity (0≤ f 2≤1),

f 3(T ) is the effect of suboptimal temperature (0≤ f 3≤1), and

f 4(RPE,RPS) is the effect of epiphyte and host rooted density (0≤ f4 ≤ 1).

8.3.1.7.1 Effect of Nutrients on Epiphyte Growth

Nutrient limitation for epiphytes is given by

f1 (N) = min
(

NH4+NO3
KHNRPE +NH4+NO3

,
PO4d

KHPRPE +PO4d

)
(8.156)

where,

NH4 is the ammonium nitrogen concentration (g N/m3),

NO3 is the nitrate + nitrite nitrogen concentration (g N/m3),

KHNRPE is the half-saturation constant for nitrogen uptake for epiphytes (g N/m3),

PO4d is the dissolved phosphate phosphorus concentration (g P/m3), and

KHPRPE is the half-saturation constant for phosphorus uptake for epiphytes (g P/m3).

8.3.1.7.2 Effect of Light on Epiphyte Growth

Light limitation for epiphyte growth is based on a Monod type equation similar to
equation (8.140)

f2 (I) =
(

IRPE

IRPE +KHIRPE

)
(8.157)

where,

KHIRPE is the half-saturation constant for epiphyte light limitation (W/m2).
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The average light intensity over the shoot canopy

IRPEA =
Iws

Kessic ·HRPS
exp(−Kessac · (H−HRPS)) · (1− exp(−Kessic ·HRPS) ) (8.158)

which follows from equation (8.137) with KeRPE = 0, can be used or equation (8.157)
can be averaged over the shoot canopy to give

f2avg (I) =
1

Kessic ·HRSP
ln
(

KHI + Ictexp(−Kessic · (H−HRSP))

KHI + Ictexp(−Kessic ·H)

)
(8.159)

Ict = Iws · exp(−Kessic · (H−HRSP)) (8.160)

which follows from equation (8.142) with KeRPE = 0.

8.3.1.7.3 Effect of Temperature on Epiphyte Growth

The effect of temperature on epiphyte growth is given by

f3 (T ) =


exp
(
−KT P1RPE [T −T P1RPE ]

2
)

i f T ≤ T P1RPE

1 i f T P1RPE < T < T P2RPE

exp
(
−KT P2RPE [T −T P2RPE ]

2
)

i f T ≥ T P1RPE

(8.161)

where,

T is the temperature (◦C) provided from the hydrodynamic model,

T P1RPE < T < T P2RPE is the optimal temperature range for epiphyte production (◦C),

KT P1RPE is the effect of temperature below T M1RPS on epiphyte production (1/◦C2),
and

KT P2RPE is the effect of temperature above T M2RPS on epiphyte production (1/◦C2)

or an exponential function.

f3 (T ) = exp(KT PRPE [T −T PREFRPE ]) (8.162)

where,

T PREFRPE is the reference temperature for shoot production (◦C), and

KT PRPE is the effect of temperature on shoot production (1/◦C).
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8.3.1.7.4 Effect of Epiphyte and Rooted Plant Density on Epiphyte Growth

The effect of rooted plant density on growth is give by

f4 (RPE,RPS) = 1−

 RPE ·δRPE

WRPE ∑Nspecies

(
2·RPS·δRPS

WRPS

)
2

(8.163)

where

δRPE is the Epiphyte dry mass to carbon mass ratio

W RPE (κe) is the maximum epiphyte mass per unit shoot area

8.3.1.8 Respiration Rate for Epiphytes

The respiration rate for epiphytes is assumed to be temperature dependent

RRPE = RREFRPE · exp(KT RRPE [T −T RREFRPE ]) (8.164)

where,

RREFRPE is the reference respiration rate for epiphytes (1/day),

T is the temperature (◦C) provided from the hydrodynamic model,

T RREFRPE is the reference temperature for epiphytes respiration (◦C), and

KT RRPE is the effect of temperature on epiphytes respiration (1/◦C2).

8.3.1.9 Non-Respiration Loss Rate for Epiphytes

The non-respiration loss rate for shoots is assumed to have a temperature dependency

LRPE = LREFRPE · exp(KT LRPE [T −T LREFRPE ]) (8.165)

where,

LREFRPE is the reference non-respiration loss rate for epiphytes (1/day),

T is the temperature (◦C) provided from the hydrodynamic model,

T LREFRPE is the reference temperature for epiphytes loss (◦C), and

KT LRPE is the effect of temperature on epiphytes loss (1/◦C2).

201 EFDC+ Theory Document



8. EUTROPHICATION MODULE

8.3.1.10 Decay Rate for Shoot Detritus

The decay rate for shoot detritus is assumed to have a temperature dependency

LRPD = LREFRPD · exp(KT LRPD [T −T LREFRPD]) (8.166)

where,

LREFRPD is the reference non-respiration loss rate for epiphytes (1/day),

T is the temperature (◦C) provided from the hydrodynamic model,

T LREFRPD is the reference temperature for epiphytes loss (◦C), and

KT LRPD is the effect of temperature on epiphytes loss (1/◦C2).

.

8.3.1.11 Coupling with Organic Carbon

The interaction between rooted plants and epiphytes and water column and bed organic
carbon species is given by

∂RPOCW

∂ t
=

1
H

(FCRRPS ·RRPS +(1−FRPSD) ·FCRLRPS ·LRPS)RPS

+
1
H

(FCRRPE ·RRPE +FCRLRPE ·LRPE)RPE +
1
H

FCRLRPD ·LRPD ·RPD (8.167)

∂RPOCB

∂ t
=

1
B
(FCRRPR ·RRPR +FCRLRPR ·LRPR)RPR (8.168)

∂LPOCW

∂ t
=

1
H

(FCLRPS ·RRPS +(1−FRPSD) ·FCLLRPS ·LRPS)RPS

+
1
H

(FCLRPE ·RRPE +FCLLRPE ·LRPE)RPE +
1
H

FCLLRPD ·LRPD ·RPD (8.169)

∂LPOCB

∂ t
=

1
B
(FCLRPR ·RRPR +FCLLRPR ·LRPR)RPR (8.170)

∂DOCW

∂ t
=

1
H

(FCDRPS ·RRPS +(1−FRPSD) ·FCDLRPS ·LRPS)RPS

+
1
H

(FCDRPE ·RRPE +FCDLRPE ·LRPE)RPE +
1
H

FCDLRPD ·LRPD ·RPD (8.171)

∂DOCB

∂ t
=

1
B
(FCDRPR ·RRPR +FCDLRPR ·LRPR)RPR (8.172)

where,
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RPOC is the concentration of refractory particulate organic carbon (g C/m3),

LPOC is the concentration of labile particulate organic carbon (g C/m3),

DOC is the concentration of dissolved organic carbon (g C/m3),

FCR is the fraction of respired carbon produced as refractory particulate organic car-
bon,

FCL is the fraction of respired carbon produced as labile particulate organic carbon,

FCD is the fraction of respired carbon produced as dissolved organic carbon,

FCRL is the fraction of non-respired carbon produced as refractory particulate organic
carbon,

FCLL is the fraction of non-respired carbon produced as labile particulate organic car-
bon,

FCDL is the fraction of non-respired carbon produced as dissolved organic carbon,

H is the depth of water column, and

B is the depth of bed.

8.3.1.12 Coupling with Dissolved Oxygen

The interaction between rooted plants and epiphytes and dissolved oxygen is given by

∂DOW

∂ t
=

1
H

(PRPS ·RPSOC ·RPS+PRPE ·RPEOC ·RPE) (8.173)

where,

DO is the concentration of dissolved oxygen (g O2/m3),

RPSOC is the oxygen to carbon ratio for plant shoots (g O2 per g C), and

RPEOC is the oxygen to carbon ratio for epiphytes (g O2 per g C).

8.3.1.13 Coupling with Phosphorous

The interaction between rooted plants and epiphytes and water column and bed phos-
phorous is given by

∂RPOPW

∂ t
=

1
H

(FPRRPS ·RRPS +(1−FRPSD) ·FPRLRPS ·LRPS) ·RPSPC ·RPS

+
1
H

(FPRRPE ·RRPE +FPRLRPE ·LRPE) ·RPEPC ·RPE

+
1
H

FPRLRPD ·LRPD ·RPSPC ·RPD (8.174)
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∂RPOPB

∂ t
=

1
B
(FPRRPR ·RRPR +FPRLRPR ·LRPR)RPRPC ·RPR (8.175)

∂LPOPW

∂ t
=

1
H

(FPLRPS ·RRPS +(1−FRPSD) ·FPLLRPS ·LRPS) ·RPSPC ·RPS

+
1
H

(FPLRPE ·RRPE +FPLLRPE ·LRPE) ·RPEPC ·RPE

+
1
H

FPLLRPD ·LRPD ·RPSPC ·RPD (8.176)

∂LPOPB

∂ t
=

1
B
(FPLRPR ·RRPR +FPLLRPR ·LRPR)RPRPC ·RPR (8.177)

∂DOPW

∂ t
=

1
H

(FPDRPS ·RRPS +(1−FRPSD) ·FPDLRPS ·LRPS) ·RPSPC ·RPS

+
1
H

(FPDRPE ·RRPE +FPDLRPE ·LRPE) ·RPEPC ·RPE

+
1
H

FCDLRPD ·LRPD ·RPSPC ·RPD (8.178)

∂DOPB

∂ t
=

1
B
(FPDRPR ·RRPR +FPDLRPR ·LRPR)RPRPC ·RPR (8.179)

∂PO4tW
∂ t

=
1
H

(FPIRPS ·RRPS +(1−FRPSD) ·FPILRPS ·LRPS) ·RPSPC ·RPS

+
1
H

(FPIRPE ·RRPE +FPILRPE ·LRPE) ·RPEPC ·RPE

+
1
H

FCILRPD ·LRPD ·RPSPC ·RPD− 1
H

FRPSPW ·RRPS ·RPSPC ·RPS

− 1
H

PRPE ·RPEPC ·RPE (8.180)

∂PO4tB
∂ t

=
1
B
(FPIRPR ·RRPR +FPILRPR ·LRPR)RPRPC ·RPR−

1
H

(1−FRPSPW )PRPS ·RPRPC ·RPS (8.181)

FRPSPW =
KHPRPRP04dw

KHPRPRP04dw +KHPRPSP04db
(8.182)

where,
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RPOP is the concentration of refractory particulate organic phosphorous (g C/m3),

LPOP is the concentration of labile particulate organic phosphorous (g C/m3),

DOP is the concentration of dissolved organic phosphorous (g C/m3),

PO4t = PO4d +PO4p is the total phosphate (g P/m3),

PO4d is the dissolved phosphate (g P/m3),

PO4p is the particulate (sorbed) phosphate (g P/m3),

FPR is the fraction of respired phosphorous produced as refractory particulate organic
phosphorous,

FPL is the fraction of respired phosphorous produced as labile particulate organic phos-
phorous,

FPD is the fraction of respired phosphorous produced as dissolved organic phospho-
rous,

FPI is the fraction of respired phosphorous produced as total phosphate,

FPRL is the fraction of non-respired phosphorous produced as refractory particulate
organic phosphorous,

FPLL is the fraction of non-respired phosphorous produced as labile particulate organic
phosphorous,

FPDL is the fraction of non-respired phosphorous produced as dissolved organic phos-
phorous,

FPIL is the fraction of non-respired phosphorous produced as total phosphate,

RPSPC is the plant shoot phosphorous to carbon ratio (g P per g C),

RPRPC is the plant root phosphorous to carbon ratio (g P per g C),

RPEPC is the epiphyte phosphorous to carbon ratio (g P per g C),

FRPSPW is the fraction of PO4d uptake from water column,

KHPRPS is the half-saturation constant for phosphorus uptake from water column
(g P/m3), and

KHPRPR is the half-saturation constant for phosphorus uptake from bed (g P/m3).

8.3.1.14 Coupling with Nitrogen

The interaction between rooted plants and epiphytes and water column and bed phos-
phorous is given by
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∂RPONW

∂ t
=

1
H

(FNRRPS ·RRPS +(1−FRPSD) ·FNRLRPS ·LRPS) ·RPSNC ·RPS

+
1
H

(FNRRPE ·RRPE +FNRLRPE ·LRPE) ·RPENC ·RPE

+
1
H

FNRLRPD ·LRPD ·RPSNC ·RPD (8.183)

∂RPONB

∂ t
=

1
B
(FNRRPR ·RRPR +FNRLRPR ·LRPR)RPRNC ·RPR (8.184)

∂LPONW

∂ t
=

1
H

(FNLRPS ·RRPS +(1−FRPSD) ·FNLLRPS ·LRPS) ·RPSNC ·RPS

+
1
H

(FNLRPE ·RRPE +FNLLRPE ·LRPE) ·RPENC ·RPE

+
1
H

FNLLRPD ·LRPD ·RPSNC ·RPD (8.185)

∂LPONB

∂ t
=

1
B
(FNLRPR ·RRPR +FNLLRPR ·LRPR)RPRNC ·RPR (8.186)

∂DONW

∂ t
=

1
H

(FNDRPS ·RRPS +(1−FRPSD) ·FNDLRPS ·LRPS) ·RPSNC ·RPS

+
1
H

(FNDRPE ·RRPE +FNDLRPE ·LRPE) ·RPENC ·RPE

+
1
H

FNDLRPD ·LRPD ·RPSNC ·RPD (8.187)

∂DONB

∂ t
=

1
B
(FNDRPR ·RRPR +FNDLRPR ·LRPR)RPRNC ·RPR (8.188)

∂NH4W

∂ t
=

1
H

(FNIRPS ·RRPS +(1−FRPSD) ·FNILRPS ·LRPS) ·RPSNC ·RPS

+
1
H

(FNIRPE ·RRPE +FNILRPE ·LRPE) ·RPENC ·RPE

+
1
H

FNILRPD ·LRPD ·RPSNC ·RPD

− 1
H

PNRPS ·FRPSNW ·RRPS ·RPSNC ·RPS

− 1
H

PNRPE ·PRPE ·RPENC ·RPE (8.189)
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∂NH4W

∂ t
=

1
B
(FNIRPR ·RRPR +FNILRPR ·LRPR)RPRNC ·RPR

− 1
H

PNRPE (1−FRPSPW )PRPS ·RPSNC ·RPS (8.190)

∂NO3W

∂ t
=− 1

H
(1−PNRPS)FRPSNW ·PRPS ·RPSNC ·RPS

− 1
H

(1−PNRPE)PRPE ·RPENC ·RPE (8.191)

∂NO3B

∂ t
= − 1

H
(1−PNRPS)(1−FRPSNW )PRPS · RPSNC · RPS (8.192)

PNRPS =
NH4 ·NO3

(KHNPRPS +NH4)(KHNPRPS +NO3)

+
NH4 ·KHNPRPS

(NH4+NO3)(KHNPRPS +NO3)
(8.193)

PNRPE =
NH4 ·NO3

(KHNPRPE +NH4)(KHNPRPE +NO3)

+
NH4 ·KHNPRPE

(NH4+NO3)(KHNPRPE +NO3)
(8.194)

FRPSNW =
KHNRPR(NH4+NO3)w

KHNRPR(NH4+NO3)w +KHNRPS(NH4+NO3)b
(8.195)

where,

RPON is the concentration of refractory particulate organic nitrogen (g N/m3),

LPON is the concentration of labile particulate organic nitrogen (g N/m3),

DON is the concentration of dissolved organic nitrogen (g N/m3),

NH4 is the ammonia (g N/m3),

NO3 is the nitrate + nitrite nitrogen (g N/m3),

FNR is the fraction of respired nitrogen produced as refractory particulate organic ni-
trogen,
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FNL is the fraction of respired nitrogen produced as labile particulate organic nitrogen,

FND is the fraction of respired nitrogen produced as dissolved organic nitrogen,

FNI is the fraction of respired nitrogen produced as ammonia,

FNRL is the fraction of non-respired nitrogen produced as refractory particulate organic
nitrogen,

FNLL is the fraction of non-respired nitrogen produced as labile particulate organic
nitrogen,

FNDL is the fraction of non-respired nitrogen produced as dissolved organic nitrogen,

FNIL is the fraction of non-respired nitrogen produced as ammonia,

RPSNC is the plant shoot nitrogen to carbon ratio (g; N; per g C),

RPRNC is the plant root nitrogen to carbon ratio (g; N; per g C),

FRPSNW is the plant shoot fraction of NH4 and NOX uptake from water column,

PNRPS is the ammonia nitrogen preference fraction for plant shoots,

KHNPRPS is the saturation coefficient for nitrogen preference for plant shoots
(g; N; per g C),

PNRPE is the ammonia nitrogen preference fraction for epiphytes,

KHNPRPE is the saturation coefficient for nitrogen preference for epiphytes
(g; N; per g C),

KHNRPS is the half-saturation constant for nitrogen uptake from water column
(g N/m3), and

KHNRPR is the half-saturation constant for nitrogen uptake from bed (g N/m3).

8.4. Macroalgae (Periphyton) State Variable

The EFDC+ water quality model was augmented to represent benthic attached algae
(often referred to as macroalgae in estuarine waters and periphyton in fresh waters) us-
ing the existing framework for phytoplankton growth kinetics. Mathematical relationships
based on the impacts of temperature, available light, available nutrients, stream velocity,
and density-dependent interactions were incorporated into the algae growth kinetics frame-
work within EFDC+. The major difference between modeling techniques for attached and
free-floating algae are as follows; (1) attached algae are expressed in terms of areal densi-
ties rather than volumetric concentrations, (2) attached algae growth can be limited by the
availability of bottom substrate, (3)the availability of nutrients to the macroalgae matrix
can be influenced by stream velocity, and (4) macroalgae are not subject to hydrodynamic
transport. A good description of periphyton kinetics as it relates to water quality modeling
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can be found in Warwick et al. (1997) and has been used to develop the current section of
this document.

A mass balance approach was used to model macroalgae growth with carbon serving
as the measure of standing crop size or biomass. For each model grid cell, the equation for
macroalgae growth is slightly different than the one for free-floating algae (equation (8.7)):

Pm = PMm · f1 (N) · f2 (I) · f3 (T ) · f4 (V ) · f5(D) (8.196)

where,

PMm is the maximum growth rate under optimal conditions for macroalgae,

f1(N) is the effect of suboptimal nutrient concentration (0≤ f 1 ≤ 1),

f2(I) is the effect of suboptimal light intensity (0≤ f 2 ≤ 1),

f3(T ) is the effect of suboptimal temperature (0≤ f3 ≤ 1),

f4(V ) is the velocity limitation factor (0≤ f4 ≤ 1), and

f 5(D) is the density dependent growth rate reduction factor (0≤ f3 ≤ 1).

The basic growth kinetics for macroalgae were developed from those supplied by
EFDC+ and others developed by Runke (1985). The macroalgae population as a whole
is characterized by the total biomass present without considering the different species and
their associated environmental processes. The optimum growth for the given temperature
is adjusted for light, nutrients, velocity, and density- dependent limitations. Each growth
limitation factor can vary from 0 to 1. A value of 1 indicates the factor does not limit
growth, and a value of 0 means the factor is so severely limiting that the growth is stopped
entirely (Bowie et al., 1985).

Stream velocity has a two-fold effect on periphyton productivity in freshwater streams:
velocity increases to a certain level to enhance biomass accrual, but further increases result
in substantial scouring (Horner et al., 1990). A benthic algal population is typified as a plant
community with an understory and overstory. The entire community is called a matrix. As
the matrix develops, the periphyton community is composed of an outer layer of photosyn-
thetically active cells and inner layers of senescent and decomposing cells. Layering can
also develop among different species of periphyton. Environmental conditions within the
matrix are altered by the physical structure of the periphyton. This influences nutrient up-
take and primary production rates of the algae (Sand-Jensen 1983). Above a certain level,
current has a simulating effect on periphyton metabolism by mixing the overlying waters
with nutrient poor waters that develop around cells (Whitford and Schumacher, 1964). The
physical structure of the periphyton community and nutrient uptake by periphyton interfere
with nutrient flux through the microbial matrix (Jan Stevenson and Glover, 1993).

Current is constantly scouring periphyton from its substrate. At high enough velocities,
shear stress can result in substantial biomass reduction. Even at low velocities, sudden in-
creases in velocity raise instantaneous loss rates substantially, but these high rates persist
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only briefly (Horner et al., 1990). An increase in velocity above that to which benthic algae
are accustomed, leads to increased loss rates and temporarily reduced biomass. However,
recolonization and growth after biomass reduction are usually rapid. The effects of sub-
optimal velocity upon growth rate are represented in the model by a velocity limitation
function. Two options are available in the model for specifying the velocity limitation; (1)
a Michaelis-Menton (or Monod) equation (8.197), and (2) a five-parameter logistic func-
tion equation (8.198). The Monod equation limits macroalgae growth due to low velocities
whereas the five-parameter logistic function can be configured to limit growth due to either
low or high velocities.

Velocity limitation option 1, the Michaelis-Menton equation is written as follows:

f4 (V ) =
U

KMV +U
(8.197)

where,

U is the stream velocity (m/s), and

KMV is the half-saturation velocity (m/s).

Velocity limitation option 2, the five-parameter logistic function is as follows:

f4 (V ) = d +
a−d[

1+
(U

c

)b
]e (8.198)

where ,

U is the stream velocity (m/s),

a is the asymptote at minimum x,

b is the slope after asymptote a,

c is the x-translation,

d is the asymptote at maximum x, and

e is the slope before asymptote d.

The half-saturation velocity in equation (8.197) is the velocity at which half the maxi-
mum growth rate occurs. This effect is analogous to the nutrient limitation because the ef-
fect of velocity at suboptimal levels on periphyton growth is due to increasing the exchange
of nutrients between the algal matrix and the overlying water (Runke, 1985). However, this
formula can be too limiting at low velocities. This function does not allow periphyton
growth in still waters, but periphyton does grow in still waters such as lakes. Therefore, the
function is applied only at velocities above a minimum threshold level (KMV min). When
velocities are at or below this lower level, the limitation function is applied at the minimum
level. Above this velocity, the current produces a steeper diffusion gradient around the peri-
phyton (Whitford and Schumacher, 1964). A minimum formulation is used to combine the
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limiting factors for nitrogen, phosphorus, and velocity. The most severely limiting factor
alone limits periphyton growth. Note that the equation (8.198) can be configured so that
low velocities are limiting by setting parameter d greater than parameter a, and vice versa
to limit growth due to high velocities. In waters that are rich in nutrients, low velocities
will not limit growth. However, high velocities may cause scouring and detachment of the
macroalgae resulting in a reduction in biomass. The five-parameter logistic function can be
configured to approximate this reduction by limiting growth at high velocities.

Macroalgae (periphyton) growth can also be limited by the availability of suitable sub-
strate (Ross and Ultsch, 1980). Macroalgae communities reach maximum rates of primary
productivity at low levels of biomass (McIntire, 1973; Pfeifer and McDiffett, 1975). The
relationship between standing crop and production employs the Michaelis-Menton kinetic
equation:

f5 (D) =
KBP

KBP+Pm
(8.199)

where,

KBP is the half-saturation biomass level (g C/m2), and

Pm is the macroalgae biomass level (g C/m2).

The half-saturation biomass level (KBP) is the biomass at which half the maximum
growth rate occurs. Caupp et al. (1991) used a KBP value of 5.0g C/m2 (assuming 50% of
ash free dry mass is carbon) for a region of the Truckee River system in California. The
function in equation (8.199) allows maximum rates of primary productivity at low levels of
biomass with decreasing rates of primary productivity as the community matrix expands.

Table 8.16. Parameters related to algae in water column

Parameter Valuea Equation Numberb

∗PMc (1/day) 2.5 (upper Potomac only) (8.7)

∗PMd (1/day) 2.25 (8.7)

∗PMg (1/day) 2.5 (8.7)

KHNx (g N/m3) 0.01 (all groups) (8.8)

KHPx (g P/m3) 0.001 (all groups) (8.8)

KHS (g Si/m3) 0.05 (8.8)

FD Temporally-varying input (8.19)

Io (langleys/day) Temporally-varying input (8.11)

Continued on next page
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Table 8.16 – continued from previous page

Parameter Valuea Equation Numberb

∗Keb (1/m) spatially-varying input (8.12)

KeISS (1/m per m3) NAc (8.12)

KeChl (1/m per mg Chl/m3) 0.017 (8.12)

CChlx (g C per mg Chl) 0.06 (all groups) (8.12)

(Dopt)x (m) 1.0 (all groups) (8.22)

(Is)min (langleys/day) 40.0 (8.22)

CIa, CIb and CIc 0.7, 0.2 & 0.1 (8.23)

T Mc, T Md and T Mg (oC) 27.5, 20.0 & 25.0 (8.28)

KT G1c and KT G2c (oC−2) 0.005 & 0.004 (8.28)

KT G1d and KT G2d (oC−2) 0.004 & 0.006 (8.28)

KT G1g and KT G2g (oC−2) 0.008 & 0.01 (8.28)

STOX (ppt) 1.0 (8.29)

∗BMRc (1/day) 0.04 (8.30)

∗BMRd (1/day) 0.01 (0.03 during Jan.-
May in saltwater only)

(8.30)

∗BMRg (1/day) 0.01 (8.30)

T Rx, (oC) 20.0 (all groups) (8.30)

KT Bx (oC−1) 0.069 (all groups) (8.30)

∗PRRc (1/day) 0.01 (8.31)

∗PRRd (1/day) 0.215 (0.065 during Jan.-
May in saltwater only)

(8.31)

∗PRRg (1/day) 0.215 (8.31)

∗WSc (m/day) 0.0 (8.6)

∗WSd (m/day) 0.35 (January - May)
0.1 (June - December)

(8.6)

∗WSg (m/day) 0.1 (8.6)

Continued on next page
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Table 8.16 – continued from previous page

Parameter Valuea Equation Numberb
a The evaluation of these values are detailed in Chapter IX of (Cerco and Cole, 1994).
b The equation number where the corresponding parameter is first shown and defined.
c Not available in (Cerco and Cole, 1994) since their formulations do not include these
parameters.
* The parameters declared as an array in the source code.

8.5. Sediment Diagenesis and Flux Formulation

The EFDC+ water quality model provides three options for defining the sediment-water
interface fluxes for nutrients and dissolved oxygen. The options are; (1) externally forced
spatially and temporally constant fluxes, (2) externally forced spatially and temporally
variable fluxes, and (3) internally coupled fluxes simulated with the sediment diagenesis
model. The water quality state variables that are controlled by diffusive exchange across
the sediment-water interface include phosphate, ammonia, nitrate, silica, chemical oxygen
demand and dissolved oxygen. The first two options require that the sediment fluxes be
assigned as spatial/temporal forcing functions based on either observed site-specific data
from field surveys or best estimates based on the literature and sediment bed characteristics.
The first two options, although acceptable for model calibration against historical data sets,
do not provide the cause-effect predictive capability that is needed to evaluate future water
quality conditions that might result from implementation of pollutant load reductions from
watershed runoff. The third option, activation of the sediment diagenesis model developed
by Di Toro et al. (2001) does provide the cause-effect predictive capability to evaluate how
water quality conditions might change with implementation of alternative load reduction
or management scenarios.

Living and non-living particulate organic carbon deposition, simulated in the EFDC+
water quality model, is internally coupled with the EFDC+ sediment diagenesis model. The
sediment diagenesis model, based on the sediment flux model of Di Toro et al. (2001), de-
scribes the decomposition of particulate organic matter in the sediment bed, the consump-
tion of dissolved oxygen at the sediment-water interface (SOD) and the exchange of dis-
solved constituents (ammonia, nitrate, phosphate, silica, COD) across the sediment-water
interface, state variables of the EFDC+ sediment flux model are sediment bed temperature,
sediment bed particulate organic carbon (POC), particulate organic nitrogen (PON), par-
ticulate organic phosphorus (POP), porewater concentrations of phosphate, ammonia, ni-
trate, silica and sulfide/methane. The sediment diagenesis model computes sediment-water
fluxes of chemical oxygen demand (COD), sediment oxygen demand (SOD), phosphate,
ammonium, nitrate, and silica. The state variables modeled for a typical lake sediment flux
model are listed in Table 8.23. An overview of the source and sink terms is presented with
a description of each state variable group in this section. The details of the state variable
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Table 8.17. Parameters related to organic carbon in water column

Parameter Valuea Equation Numberb

FCRP 0.35 (8.32)

FCLP 0.55 (8.33)

FCDP 0.10 (8.34)

FCDx 0.0 (all groups) (8.34)

∗WSRP (m/day) 1.0 (8.32)

∗WSLP (m/day) 1.0 (8.33)

KHRx (g O2/m3) 0.5 (all groups) (8.34)

KHORDO (g O2/m3) 0.5 (8.42)

KRC (1/day) 0.005 (8.43)

KLC (1/day) 0.075 (8.44)

KDC (1/day) 0.01 (8.45)

KRCalg (1/day per g C/m3) 0.0 (8.43)

KLCalg (1/day per g C/m3) 0.0 (8.44)

KDCalg (1/day per g C/m3) 0.0 (8.45)

T RHDR (OC) 20.0 (8.43)

T RMIN (OC) 20.0 (8.45)

KTHDR (OC−1) 0.069 (8.43)

KTMIN (OC−1) 0.069 (8.45)

KHDNN (g N/m3) 0.1 (8.47)

AANOX 0.5 (8.47)

a The evaluation of these values are detailed in Chapter IX of (Cerco and Cole, 1994).
b The equation number where the corresponding parameter is first shown and defined.
* The parameters declared as an array in the source code.

214 EFDC+ Theory Document



8. EUTROPHICATION MODULE

Fig. 8.2. Velocity limitation function for (Option 1) the Monod equation where KMV = 0.25m/s
and KMV min = 0.15m/s, and (Option 2) the 5-parameter logistic function where
a = 1.0,b = 12.0,c = 0.3,d = 0.35, and e = 3.0 (high velocities are limiting).

equations, kinetic terms and numerical solution methods for the sediment diagenesis model
are presented in Di Toro et al. (2001); Ji (2008); Park et al. (1995).

A sediment process model developed by DiToro and Fitzpatrick (1993) hereinafter re-
ferred to as D&F was coupled with CE-QUAL-ICM for Chesapeake Bay water quality
modeling (Cerco and Cole, 1994). The sediment process model was slightly modified and
incorporated into the EFDC+ water quality model to simulate the processes in the sediment
and at the sediment-water interface. The description of the EFDC+ sediment process model
in this section is from Park et al. (1995). The sediment process model has 27 water quality
related state variables and fluxes (Table 8.24).

The nitrate state variables, numbers (15), (16) and (22) in Table 8.24, in the model
represent the sum of nitrate and nitrite nitrogen. The three G classes for particulate organic
matter (POM) in Layer 2, and the two layers for inorganic substances are described below.

In the sediment model, benthic sediments are represented as two layers (Figure 8.3).
The upper layer (Layer 1) is in contact with the water column and may be oxic or anoxic de-
pending on dissolved oxygen concentration in the overlying water. The lower layer (Layer
2) is permanently anoxic. The upper layer depth, which is determined by the penetration
of oxygen into the sediments, is at its maximum only a small fraction of the total depth.
Because H1 (∼ 0.1cm) << H2,

H = H1 +H2 ≈ H2 (8.200)

where,

H is the total depth (approximately 10cm),
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H1 is the upper layer depth, and

H2 is the lower layer depth.

Fig. 8.3. Sediment layers and processes included in sediment process model

The model incorporates three basic processes (Figure 8.4); (1) depositional flux of
POM, (2) the diagenesis of POM, and (3) the resulting sediment flux. The sediment model
is driven by the net settling of particulate organic carbon, nitrogen, phosphorus and silica
from the overlying water to the sediments (depositional flux). Because of the negligible
thickness of the upper layer (equation (8.200)), deposition proceeds from the water col-
umn directly to the lower layer. Within the lower layer, the model simulates the diagenesis
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(mineralization or decay) of deposited POM, which produces oxygen demand and inor-
ganic nutrients (diagenesis flux). The third basic process is the flux of substances produced
by diagenesis (sediment flux). Oxygen demand, as sulfide (in saltwater) or methane (in
freshwater), takes three paths out of the sediments; (1) oxidation at the sediment-water in-
terface as sediment oxygen demand, (2) export to the water column as chemical oxygen
demand, or (3) burial to deep, inactive sediments.

Inorganic nutrients produced by diagenesis take two paths out of the sediments; (1)
release to the water column, or (2) burial to deep, inactive sediments (Figure 8.4).

Fig. 8.4. Schematic diagram for sediment process model

This section describes the three basic processes with reactions and sources/sinks for
each state variable. The method of solution includes finite difference equations, solution
scheme, boundary and initial conditions. Complete model documentation can be found in
DiToro and Fitzpatrick (1993).

8.5.1 Depositional Flux

Deposition is one process that couples the water column model with the sediment
model. Consequently, deposition is represented in both the water column and sediment
models. In the water column model, the governing mass-balance equations for the follow-
ing state variables contain settling terms, which represent the depositional fluxes:

1. three algal groups, cyanobacteria, diatoms and green algae (equation (8.6))

2. refractory and labile particulate organic carbon (equations (8.32)and (8.33))

3. refractory and labile particulate organic phosphorus (equations (8.50) and (8.51) and
total phosphate (equation (8.53))

4. refractory and labile particulate organic nitrogen (equations (8.67) and (8.68))

5. particulate biogenic silica (equation (8.84)) and available silica (equation (8.85))
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The sediment model receives these depositional fluxes of particulate organic carbon
(POC), particulate organic nitrogen (PON), particulate organic phosphorus (POP) and par-
ticulate biogenic silica (PSi). Because of the negligible thickness of the upper layer (equa-
tion (8.200)), deposition is considered to proceed from the water column directly to the
lower layer. Since the sediment model has three G classes of POM, G;(i = 1,2or3), de-
pending on the time scales of reactivity (Section 5.2), the POM fluxes from the water col-
umn should be mapped into three G classes based on their reactivity. Then, the depositional
fluxes for the ith G class (i = 1, 2 or 3) may be expressed as:

JPOC,i = FCLPi ·WSLP ·LPOCN +FCRPi ·WSRP ·RPOCN + ∑
x=c,d,g

FCBx,i ·WSx ·BN
x

(8.201)

JPON,i = FNLPi ·WSLP ·LPONN +FNRPi ·WSRP ·RPONN

+ ∑
x=c,d,g

FNBx,i ·ANCx ·WSx ·BN
x (8.202)

JPOP,i = FPLPi ·WSLP ·LPOPN +FPRPi ·WSRP ·RPOPN

+ ∑
x=c,d,g

FPBx,i ·APC ·WSx ·BN
x + γi ·WST SS ·PO4pN (8.203)

JPSi =WSd ·SUN +ASCd ·WSd ·BN
d +WST SS ·SApN (8.204)

where,

JPOM,i is the depositional flux of POM (M = C,N or P) routed into the ith G class
(g/m2/day),

JPSi is the depositional flux of PSi (g Si/m2/day),

FCLPi,FNLPi and FPLPi are the fraction of water column labile POC, PON and POP
respectively, routed into the ith G class in sediment,

FCRPi, FNRPi and FPRPi are the fraction of water column refractory POC, PON and
POP respectively, routed into the ith G class in sediment,

FCBx,i, FNBx,i and FPBx,i are the fraction of POC, PON and POP, respectively, in the
algal group x routed into the ith G class in sediment, and

γi = 1 for i = 1,γi = 0 for i = 2 or 3.

In the source code, the sediment process model is solved after the water column water
quality model, and the calculated fluxes using the water column conditions at t = tn are
used for the computation of the water quality variables at t = tn + θ . The superscript N
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indicates the variables after being updated for the kinetic processes, as defined in equation
(8.110).

The settling of sorbed phosphate is considered to contribute to the labile G1 pool in
equation (8.203), and settling of sorbed silica contributes to JPSi in equation (8.204) to avoid
creation of additional depositional fluxes for inorganic particulates. The sum of distribution
coefficients should be unity:

∑
i

FCLPi = ∑
i

FNLPi = ∑
i

FPLPi = ∑
i

FCRPi =

∑
i

FNRPi = ∑
i

FPRPi = ∑
i

FCBx,i = ∑
i

FNBx,i = ∑
i

FPBx,i = 1.

The settling velocities, WSLP, WSRP, WSx, and WST SS, as defined in the EFDC+ water
column model (Section 8.4), are net settling velocities. If total active metal is selected as a
measure of sorption site, WST SS is replaced by WSs in Equations (8.203) and (8.204).

8.5.2 Diagenesis Flux

Another coupling point of the sediment model to the water column model is the sedi-
ment flux. The computation of sediment flux requires that the magnitude of the diagenesis
flux be known. The diagenesis flux is explicitly computed using mass-balance equations for
deposited POC, PON and POP. Dissolved silica is produced in the sediments as a result of
the dissolution of PSi. Since the dissolution process is different from the bacterial-mediated
diagenesis process, it is presented separately. In the mass-balance equations, the deposi-
tional fluxes of POM are the source terms and the decay of POM in the sediments produces
the diagenesis fluxes. The integration of the mass-balance equations for POM provides the
diagenesis fluxes that are the inputs for the mass-balance equations for ammonium, nitrate,
phosphate and sulfide/methane in the sediments.

The difference in decay rates of POM is accounted for by assigning a fraction of POM
to various decay classes (Westrich and Berner, 1984). POM in the sediments is divided into
three G classes, or fractions, representing three scales of reactivity. The G1 (labile) fraction
has a half life of 20 days, and the G2 (refractory) fraction has a half life of one year. The
G3 (inert) fraction is non-reactive, i.e., it undergoes no significant decay before burial into
deep, inactive sediments. The varying reactivity of the G classes controls the time scale
over which changes in depositional flux will be reflected in changes in diagenesis flux. If
the G1 class would dominate the POM input into the sediments, then there would be no
significant time lag introduced by POM diagenesis and any changes in depositional flux
would be readily reflected in diagenesis flux.

As the upper layer thickness is negligible (equation (8.200)) the depositional flux is
considered to proceed directly to the lower layer (equations (8.201), to (8.204)), and di-
agenesis is considered to occur only in the lower layer. The mass-balance equations are
similar for POC, PON and POP, and for different G classes. The mass-balance equation in
the anoxic lower layer for the ith G class (i = 1, 2 or 3) may be expressed as:
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H2
∂GPOM,i

∂ t
= −KPOM,i ·θ T−20

POM,i ·GPOM,i ·H2−W ·GPOM,i + JPOM,i (8.205)

where,

GPOM,i is the concentration of POM(M =C, N or P) in the ith G class in Layer 2 (g/m3)

KPMO,i is the decay rate of the ith G class POM at 20◦C in Layer 2 (1/day)

θPOM,i is the constant for temperature adjustment for KPOM,i

T is the sediment temperature (◦C)

W is the burial rate (m/day)

Since the G3 class is inert KPOM,3 = 0.
Once the mass-balance equations for GPOM,1 and GPOM,2 are solved, the diagenesis

fluxes are computed from the rate of mineralization of the two reactive G classes:

JM =
2

∑
i=1

KPOM,i ·θ T−20
POM,i ·GPOM,i ·H2 (8.206)

JM is the diagenesis flux (g/m2/day) of carbon (M =C), nitrogen (M = N) or phospho-
rus (M = P)

8.5.3 Sediment Flux

8.5.3.1 Basic Equations

The mineralization of POM produces soluble intermediates, which are quantified as
diagenesis fluxes in the previous section. The intermediates react in the oxic and anoxic
layers, and portions are returned to the overlying water as sediment fluxes. Computation
of sediment fluxes requires mass-balance equations for ammonium, nitrate, phosphate, sul-
fide/methane and available silica. This section describes the flux portion for ammonium,
nitrate, phosphate and sulfide/methane of the model.

In the upper layer, the processes included in the flux portion are:

1. exchange of dissolved fraction between Layer 1 and the overlying water,

2. exchange of dissolved fraction between Layer 1 and 2 via diffusive transport,

3. exchange of particulate fraction between Layer 1 and 2 via particle mixing,

4. loss by burial to the lower layer (Layer 2),

5. removal (sink) by reaction, and

6. internal sources.
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Since the upper layer is quite thin (H1 ∼ 0.1cm, equation (8.200)) and the surface mass
transfer coefficient (s) is on the order of 0.1m/day, then the residence time in the upper
layer is: H/s 10−2 days. Hence, a steady-state approximation is made in the upper layer.
Then the mass-balance equation for ammonium, nitrate, phosphate or sulfide/methane in
the upper layer is:

H1
∂Ct1
∂ t

= 0 = s( f d0 ·Ct0− f d1 ·Ct1)+KL( f d2 ·Ct2− f d1 ·Ct1)

+ω ( f p2 ·Ct2− f p1 ·Ct1)−W ·Ct1−
K2

1
s

Ct1 + J1 (8.207)

where,

Ct1 and Ct2 are the total concentrations in Layer 1 and 2, respectively (g/m3),

Ct0 is the total concentrations in the overlying water (g/m3),

s is the surface mass transfer coefficient (m/day),

KL is the diffusion velocity for dissolved fraction between Layer 1 and 2 (m/day),

ω is the particle mixing velocity between Layer 1 and 2 (m/day),

f d0 is the dissolved fraction of total substance in the overlying water (0≤ f d0 ≤ 1),

f d1 is the dissolved fraction of total substance in Layer 1 (0≤ f d1 ≤ 1),

f p1 is the Particulate fraction of total substance in Layer 1 (= 1− f d1),

f d2 is the dissolved fraction of total substance in Layer 2 (0≤ f d2 ≤ 1),

f p2 is the Particulate fraction of total substance in Layer 2 (= 1− f d2),

K1 is the reaction velocity in Layer 1 (m/day), and

J1 is the sum of all internal sources in Layer 1 (g/m2/day).

The first term on the RHS of equation (8.207) represents the exchange across sediment-
water interface. Then the sediment flux from Layer 1 to the overlying water, which couples
the sediment model to the water column model, may be expressed as:

Jaq = s( f d1 ·Ct1− f d0 ·Ct0) (8.208)

where, Jaq is the sediment flux of ammonium, nitrate, phosphate or sulfide/methane to the
overlying water (g/m2/day).

The convention used in equation (8.208) is that the positive flux is from the sediment to
the overlying water.

In the lower layer, the processes included in the flux portion are (Figure 8.1):

1. exchange of dissolved fraction between Layer 1 and 2 via diffusive transport,
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2. exchange of particulate fraction between Layer 1 and 2 via particle mixing,

3. deposition from Layer 1 and burial to the deep inactive sediments,

4. removal (sink) by reaction, and

5. internal sources including diagenetic source.

The mass-balance equation for ammonium, nitrate, phosphate or sulfide/methane in the
lower layer is

H2
∂Ct2
∂ t

=−KL( f d2 ·Ct2− f d1 ·Ct1)

−ω ( f p2 ·Ct2− f p1 ·Ct1)+W (Ct1−Ct2)− K2 ·Ct2 + J2 (8.209)

where,

K2 is the reaction velocity in Layer 2 (m/day), and

J2 is the sum of all internal sources including diagenesis in Layer 2 (g/m2/day).

The substances produced by mineralization of POM in sediments may be present in
both dissolved and particulate phases. This distribution directly affects the magnitude of
the substance that is returned to the overlying water. In equations (8.207) to (8.209), the
distribution of a substance between the dissolved and particulate phases in a sediment is
parameterized using a linear partitioning coefficient.

The dissolved and particulate fractions are computed from the partitioning equations:

f d1 =
1

1+m1 ·π1
f p1 = 1− f d1 (8.210)

f d2 =
1

1+m2 ·π2
f p2 = 1− f d2 (8.211)

where,

m1 and m2 are the solid concentrations in Layer 1 and 2, respectively (kg/l), and

π1 and π2 are the partition coefficient in Layer 1 and 2, respectively (per kg/l).

The partition coefficient is the ratio of particulate to dissolved fraction per unit solid
concentration (i.e. per unit sorption site available).

All terms, except the last two terms, in equations (8.207) and (8.209) are common to all
state variables and are described in Section 5.3.1. The last two terms represent the reaction
and source/sink terms, respectively.
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8.5.3.2 Common Parameters for Sediment Flux

Parameters that are needed for the sediment fluxes are s, ω, KL, W,H2, m1, m2, π1,
π2, κ1, κ2, J1, and J2 in equations (8.207) to (8.211). Of these, κ1, κ2, J1 and J2 are
variable-specific. Among the other common parameters, W, H2, m1 and m2, are specified
as input. The modeling of the remaining three parameters, s, ω, KL, are described in this
section.

8.5.3.2.1 Surface mass transfer coefficient

Owing to the observation that the surface mass transfer coefficient s, can be related to
the sediment oxygen demand (SOD) (Di Toro et al., 1990) s can be estimated from the ratio
of SOD and overlying water oxygen concentration:

s =
D1

H1
=

SOD
DO0

(8.212)

where D is the diffusion coefficient in Layer 1 (m2/day).
Knowing s, it is possible to estimate the other model parameters.

8.5.3.2.2 Particulate phase mixing coefficient

The particle mixing velocity between Layer 1 and 2 is parameterized as

ω =
Dp ·θ T−20

Dp

H2

GPOC,1

GPOC,R

DO0

KMDp +DO0
(8.213)

where,

Dp is the apparent diffusion coefficient for particle mixing (m2/day),

θDp is the constant for temperature adjustment for Dp,

GPOC,R is the reference concentration for GPOC,1 (g C/m3), and

KMDp is the particle mixing half-saturation constant for oxygen (g O2/m3).

The enhanced mixing of sediment particles by macrobenthos (bioturbation) is quan-
tified by estimating Dp. The particle mixing appears to be proportional to the benthic
biomass (Matisoff, 1982), which is correlated to the carbon input to the sediment Rob-
bins et al. (1989), This is parameterized by assuming that benthic biomass is proportional
to the available labile carbon GPOC,1, and GPOC,R is the reference concentration at which
the particle mixing velocity is at its nominal value. The Monod-type oxygen dependency
accounts for the oxygen dependency of benthic biomass.

It has been observed that a hysteresis exists in the relationship between the bottom water
oxygen and benthic biomass. Benthic biomass increases as the summer progresses. How-
ever, the occurrence of anoxia/hypoxia reduces the biomass drastically and also imposes
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stress on benthic activities. After full overturn, the bottom water oxygen increases but the
population does not recover immediately. Hence, the particle mixing velocity, which is
proportional to the benthic biomass, does not increase in response to the increased bottom
water oxygen. Recovery of benthic biomass following hypoxic events depends on many
factors including severity and longevity of hypoxia, constituent species, and salinity (Diaz
et al., 1995).

This phenomenon of reduced benthic activities and hysteresis is parameterized based
on the idea of stress that low oxygen imposes on the benthic population. It is analogous to
the modeling of the toxic effect of chemicals on organisms (Mancini, 1983). A first order
differential equation is employed, in which the benthic stress 1) accumulates only when
overlying oxygen is below KMDp and 2) is dissipated at a first order rate (Figure 8.5a):

∂ST
∂ t

=

{
−KST ·ST +

(
1− DO0

KMDp

)
, if DO0 < KMDp

−KST ·ST , if DO0 > KMDp
(8.214)

where,

ST is the accumulated benthic stress (day), and

KST is the first order decay rate for ST (1/day).

The behavior of this formulation can be understood by evaluating the steady-state stresses
at two extreme conditions of overlying water oxygen, DO0 as:

DO0 = 0, KST ·ST = 1 f (ST ) = (1−KST ·ST ) = 0

DO0 ≥ KMDp, KST ·ST = 0 f (ST ) = (1−KST ·ST ) = 1

The dimensionless expression, f (ST ) = 1−KST ·ST , appears to be the proper variable
to quantify the effect of benthic stress on benthic biomass and thus particle mixing (Figure
8.5b).

The final formulation for the particle mixing velocity including the benthic stress is:

ω =
Dp ·θ T−20

Dp

H2

GPOC,1

GPOC,R

DO0

KMDp +DO0
f (ST )+

Dpmin

H2
(8.215)

where Dpmin is the minimum diffusion coefficient for particle mixing (m2/day).
The reduction in particle mixing due to the benthic stress, f(ST ), is estimated by em-

ploying the following procedure. The stress ST, is normally calculated with equation
(8.214). Once DO0 drops below a critical concentration DOST,c, for NChypoxia consecu-
tive days or more, the calculated stress is not allowed to decrease until tMBS days of DO0 ¿
DOST,c. That is, only when hypoxic days are longer than critical hypoxia days (NChypoxia),
the maximum stress, or minimum (1−KST · ST ), is retained for a specified period (tMBS
days) after DO0 recovery (Figure 8.5). No hysteresis occurs if DO0 does not drop below

224 EFDC+ Theory Document



8. EUTROPHICATION MODULE

DOST,c or if hypoxia lasts less than NChypoxia days. When applying maximum stress for
tMBS days, the subsequent hypoxic days are not included in tMBS. This parameterization of
hysteresis essentially assumes seasonal hypoxia, i.e., one or two major hypoxic events dur-
ing summer, and might be unsuitable for systems with multiple hypoxic events throughout
a year.

Three parameters relating to hysteresis DOST,c, NChypoxia, and tMBS are functions of
many factors including severity and longevity of hypoxia, constituent species and salinity,
and thus have site-specific variabilities (Diaz et al., 1995). The critical overlying oxygen
concentration DOST,c, also depends on the distance from the bottom of the location of DO0.
The critical hypoxia days NChypoxia, depends on tolerance of benthic organisms to hypoxia
and thus on benthic community structure (Diaz et al., 1995). The time lag for the recovery
of benthic biomass following hypoxic events, tMBS, tends to be longer for higher salinity.
The above three parameters are considered to be spatially constant input parameters.

8.5.3.2.3 Dissolved phase mixing coefficient

Dissolved phase mixing between Layer 1 and 2 is via passive molecular diffusion,
which is enhanced by the mixing activities of the benthic organisms (bio-irrigation). This
is modeled by increasing the diffusion coefficient relative to the molecular diffusion coef-
ficient:

KL =
Dd ·θ T−20

Dd
H2

+RBI,BT ·ω (8.216)

where,

Dd is the diffusion coefficient in pore water (m2/day),

θDd is the constant for temperature adjustment for Dd , and

RBI,BT is the ratio of bio-irrigation to bioturbation.

The last term in equation (8.216) accounts for the enhanced mixing by organism activities.

8.5.3.3 Ammonia Nitrogen

Diagenesis is assumed not to occur in the upper layer because of its shallow depth, and
ammonium is produced by diagenesis in the lower layer:

J1,NH4 = 0 J2,NH4 = JN (8.217)

where JN is from equation (8.206).
Ammonium is nitrified to nitrate in the presence of oxygen. A Monod-type expression

is used for the ammonium and oxygen dependency of the nitrification rate. Then, the oxic
layer reaction velocity in equation (8.207) for ammonium may be expressed as:
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Fig. 8.5. Benthic stress (a) and its effect on particle mixing (b) as a function of overlying water
column dissolved oxygen concentration.
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K2
1,NH4 =

DO0

2 ·KMNH4,O2 +DO0

KMNH4

KMNH4 +NH41
K2

NH4 ·θ T−20
NH4 (8.218)

and then the nitrification flux becomes:

JNit =
K2

1,NH4

s
·NH41 (8.219)

where,

KMNH4,O2 is the nitrification half-saturation constant for dissolved oxygen (g O2/m3),

NH41 is the total ammonium nitrogen concentration in Layer 1 (g N/m3),

KMNH4 is the nitrification half-saturation constant for ammonium (g N/m3),

KNH4 is the optimal reaction velocity for nitrification at 20◦C (m/day),

θNH4 is the constant for temperature adjustment for KNH4, and

JNit is the nitrification flux (g N/m2/day).

Nitrification does not occur in the anoxic lower layer:

K2,NH4 = 0 (8.220)

Once equations (8.207) and (8.209) are solved for NH41 and NH42, the sediment flux
of ammonium to the overlying water Jaq,NH4, can be calculated using equation (8.208).
Note that it is not NH41 and NH42 that determine the magnitude of Jaq,NH4 (DiToro and
Fitzpatrick (1993, Section X-B-2)), but the magnitude is determined by (1) the diagenesis
flux, (2) the fraction that is nitrified, and (3) the surface mass transfer coefficient (s) that
mixes the remaining portion.

8.5.3.4 Nitrate Nitrogen

Nitrification flux is the only source of nitrate in the upper layer, given by Equation
(8.219), and there is no diagenetic source for nitrate in both layers:

J1,NO3 = JNit

J2,NO3 = 0
(8.221)

Nitrate is present in sediments as dissolved substance, i.e., π1,NO3 = π2,NO3 = 0, making
f d1,NO3 = f d2,NO3 = 1 (Equations (8.210) and (8.211)): it also makes R meaningless,
hence R = 0. Nitrate is removed by denitrification in both oxic and anoxic layers with the
carbon required for denitrification supplied by carbon diagenesis. The reaction velocities
in equations (8.207) and (8.209) for nitrate may be expressed as:
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K2
1,NO3 = K2

NO3,1 ·θ T−20
NO3 (8.222)

K2,NO3 = K2
NO3,2 ·θ T−20

NO3 (8.223)

and the denitrification flux out of sediments as a nitrogen gas becomes:

JN2(g) =
K2

1,NO3

s
NO31 +K2,NO3 ·NO32 (8.224)

where,

KNO3,1 is the reaction velocity for denitrification in Layer 1 at 20◦C (m/day),

KNO3,2 is the reaction velocity for denitrification in Layer 2 at 20◦C (m/day),

θNO3 is the constant for temperature adjustment for KNO3,1 and KNO3,2,

JN2(g) is the denitrification flux (g N/m2/day),

NO31 is the total nitrate nitrogen concentration in Layer 1 (g N/m3), and

NO32 is the total nitrate nitrogen concentration in Layer 2 (g N/m3).

Once equations (8.207) and (8.209) are solved for NO31 and NO32, the sediment flux of
nitrate to the overlying water Jaq,NO3, can be calculated using equation (8.208). The steady-
state solution for nitrate showed that the nitrate flux is a linear function of NO30 (DiToro
and Fitzpatrick, 1993, equation III-15): the intercept quantifies the amount of ammonium
in the sediment that is nitrified but not denitrified (thus releases as Jaq,NO3), and the slope
quantifies the extent to which overlying water nitrate is denitrified in the sediment. It also
revealed that if the internal production of nitrate is small relative to the flux of nitrate from
the overlying water, the normalized nitrate flux to the sediment −Jaq,NO3/NO30, is linear
in s for small s and constant for large s (DiToro and Fitzpatrick, 1993, Section III-C ).
For small s (∼ 0.01m/day), H is large (equation (8.212)) so that oxic layer denitrification
predominates and Jaq,NO3 is essentially zero independent of NO30 (DiToro and Fitzpatrick,
1993, Figure III-4).

8.5.3.5 Phosphate Phosphorus

Phosphate is produced by the diagenetic breakdown of POP in the lower layer:

J1,PO4 = 0
J2,PO4 = JP

(8.225)

where JP is from equation (8.206). A portion of the liberated phosphate remains in the
dissolved form and a portion becomes particulate phosphate, either via precipitation of
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phosphate-containing minerals (Troup, 1974) (e.g. vivianite, Fe3(PO4)2(s)), or by parti-
tioning to phosphate sorption sites (Barrow, 1983; Giordani and Astorri, 1986; Lijklema,
1980). The extent of particulate formation is determined by the magnitude of the partition
coefficients π1,PO4 and π2,PO4 in equations (8.210) and (8.211). Phosphate flux is strongly
affected by DO0, the overlying water oxygen concentration. As DO0 approaches zero, the
phosphate flux from the sediments increases. This mechanism is incorporated by making
π1,PO4 larger, under oxic conditions, than π2,PO4. In the model, when DO0 exceeds a critical
concentration (DO0)crit,PO4, sorption in the upper layer is enhanced by an amount πPO4,1:

π1,PO4 = π2,PO4 · (∆πPO4,1) DO0 > (DO0)crit,PO4 (8.226)

When oxygen falls below (DO0)crit,PO4, then:

π1,PO4 = π2,PO4 ·
(
∆πPO4,1

)DO0/(DO0)crit,PO4 DO0 ≤ (DO0)crit,PO4 (8.227)

which smoothly reduces π1,PO4 to π2,PO4 as DO0 goes to zero. There is no removal reaction
for phosphate in both layers:

κ1,PO4 = κ2,PO4 = 0 (8.228)

Once equations (8.207) and (8.209) are solved for PO41 and PO42, the sediment flux
of phosphate to the overlying water Jaq,PO4, can be calculated using equation (8.208).

8.5.3.6 Sulfide/Methane and Oxygen Demand

8.5.3.6.1 Sulfide

No diagenetic production of sulfide occurs in the upper layer. In the lower layer, sulfide
is produced by carbon diagenesis (equation (8.206)) decremented by the organic carbon
consumed by denitrification (equation (8.224)). Then:

J1,H2S = 0 J2,H2S = aO2,C · JC−aO2,NO3 · JN2(g) (8.229)

where,

aO2,C is the stoichiometric coefficient for carbon diagenesis consumed by sulfide oxi-
dation (2.6667g O2− equivalents per g C), and

aO2,NO3 is the stoichiometric coefficient for carbon diagenesis consumed by denitrifica-
tion (2.8571g O2− equivalents per g N).

A portion of the dissolved sulfide that is produced in the anoxic layer reacts with the iron
to form particulate iron monosulfide (FeS(s)) (Morse et al., 1987). The particulate fraction
is mixed into the oxic layer where it can be oxidized to ferric oxyhydroxide ( Fe2O3(s)).
The remaining dissolved fraction also diffuses into the oxic layer where it is oxidized to
sulfate. Partitioning between dissolved and particulate sulfide in the model represents the
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formation of FeS(s), which is parameterized using partition coefficients %1,H2S and %2,H2S,
in Equations (8.210) and (8.211).

The present sediment model has three pathways for sulfide, the reduced end product of
carbon diagenesis: (1) sulfide oxidation, (2) aqueous sulfide flux, and (3) burial. The dis-
tribution of sulfide among the three pathways is controlled by the partitioning coefficients
and the oxidation reaction velocities (Section V-E in DiToro and Fitzpatrick (1993)). Both
dissolved and particulate sulfide are oxidized in the oxic layer, consuming oxygen in the
process. In the oxic upper layer, the oxidation rate that is linear in oxygen concentration is
used (Boudreau, 1991; Cline and Richards, 1969; Millero, 1986). In the anoxic lower layer,
no oxidation can occur. Then, the reaction velocities in equations (8.207) and (8.209) may
be expressed as:

K2
1,H2S =

(
K2

H2S,d1 · f d1,H2S +K2
H2S,p1 · f p1,H2S

)
θ

T−20
H2S

DO0

2 ·KMH2S,O2
(8.230)

K2
2,H2S = 0 (8.231)

where,

KH2S,d1 is the reaction velocity for dissolved sulfide oxidation in Layer 1 at 20◦C
(m/day),

KH2S,p1 is the reaction velocity for particulate sulfide oxidation in Layer 1 at 20◦C
(m/day),

θH2S is the constant for temperature adjustment for KH2S,d1 and KH2S,p1, and

KMH2S,O2 is the constant to normalize the sulfide oxidation rate for oxygen (g O2/m3).

The constant KMH2S,O2, which is included for convenience only, is used to scale the
oxygen concentration in the overlying water. At DO0 = KMH2S,O2, the reaction velocity
for sulfide oxidation rate is at its nominal value.

The oxidation reactions in the oxic upper layer cause oxygen flux to the sediment,
which exerts SOD. By convention, SOD is positive: SOD = −Jaq,O2. The SOD in the
model consists of two components, carbonaceous sediment oxygen demand (CSOD) due
to sulfide oxidation and nitrogenous sediment oxygen demand (NSOD) due to nitrification:

SOD =CSOD+NSOD =
K2

1,H2S

s
H2S1 +aO2,NH4 · JNit (8.232)

where,

H2S1 is the total sulfide concentration in Layer 1 (g O2− equivalents/m2/day), and

aO2,NH4 is the stoichiometric coefficient for oxygen consumed by nitrification
(4.33 g O2 per g N).
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Equation (8.229) is nonlinear for SOD because the RHS contains s = SOD/DO0) so
that SOD appears on both sides of the equation: note that JNit (equation (8.219)) is also a
function of s. A simple back substitution method is used.

If the overlying water oxygen is low, then the sulfide that is not completely oxidized in
the upper layer can diffuse into the overlying water. This aqueous sulfide flux out of the
sediments, which contributes to the chemical oxygen demand in the water column model,
is modeled using

Jaq,H2S = s( f d1,H2S ·H2S1−COD) (8.233)

The sulfide released from the sediment reacts very quickly in the water column when
oxygen is available, but can accumulate in the water column under anoxic conditions. The
COD, quantified as oxygen equivalents, is entirely supplied by benthic release in the water
column model (equation (8.91)). Since sulfide also is quantified as oxygen equivalents,
COD is used as a measure of sulfide in the water column in equation (8.233).

8.5.3.6.2 Methane

When sulfate is used up, methane can be produced by carbon diagenesis and methane
oxidation consumes oxygen (Di Toro et al., 1990). Owing to the abundant sulfate in the
saltwater, only the aforementioned sulfide production and oxidation are considered to occur
in the saltwater. Since the sulfate concentration in the freshwater is generally insignificant,
methane production is considered to replace sulfide production in the freshwater. In the
freshwater, methane is produced by carbon diagenesis in the lower layer decremented by
the organic carbon consumed by denitrification, and no diagenetic production of methane
occurs in the upper layer (equation (8.229)):

J1,CH4 = 0 J2,CH4 = aO2,C · JC−aO2,NO3 · JN2(g) (8.234)

The dissolved methane produced takes two pathways; (1) oxidation in the oxic upper
layer causing CSOD, or (2) escape from the sediment as aqueous flux or as gas flux:

J2,CH4 =CSOD+ Jaq,CH4 + JCH4(g) (8.235)

where,

Jaq,CH4 is the aqueous methane flux (g O2− equivalents/m2/day), and

JCH4(g) is the gaseous methane flux (g O2− equivalents/m2/day).

A portion of dissolved methane that is produced in the anoxic layer diffuses into the
oxic layer where it is oxidized. This methane oxidation causes CSOD in the freshwater
sediment (Di Toro et al., 1990) :

CSOD =CSODmax ·

(
1− sech

[
KCH4 ·θ T−20

CH4
s

] )
(8.236)
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CSODmax = minimum
{√

2 ·KL ·CH4sat · J2,CH4, J2,CH4
}

(8.237)

CH4sat = 100
(

1+
h+H2

10

)
1.02420−T (8.238)

where,

CSODmax is the maximum CSOD occurring when all the dissolved methane transported
to the oxic layer is oxidized,

KCH4 is the reaction velocity for dissolved methane oxidation in Layer 1 at 20◦C
(m/day),

θH2S is the constant for temperature adjustment for KCH4 , and

CH4sat is the saturation concentration of methane in the pore water (g O2 −
equivalents/m3).

The term, (h+H2)/10 where h and H2 are in meters, in equation (8.238) is the depth
from the water surface that corrects for the in situ pressure. Equation (8.238) is accurate to
within 3% of the reported methane solubility between 5 and 20◦C (Yamamoto et al., 1976).

If the overlying water oxygen is low, the methane that is not completely oxidized can
escape the sediment into the overlying water either as aqueous flux or as gas flux. The aque-
ous methane flux, which contributes to the chemical oxygen demand in the water column
model, is modeled using (Di Toro et al., 1990):

Jaq,CH4 =CSODmax · sech

[
KCH4 ·θ T−20

CH4
s

]
=CSODmax−CSOD (8.239)

Methane is only slightly soluble in water. If its solubility CH4sat given by equation
(8.238) is exceeded in the pore water, it forms a gas phase that escapes as bubbles. The loss
of methane as bubbles, i.e. the gaseous methane flux, is modeled using equation (8.235)
with J2,CH4 from equation (8.234), CSOD from equation (8.236) and Jaq,CH4 from equation
(8.239) (Di Toro et al., 1990).

8.5.4 Silica

The production of ammonium, nitrate and phosphate in sediments is the result of the
mineralization of POM by bacteria. The production of dissolved silica in sediments is the
result of the dissolution of particulate biogenic or opaline silica, which is thought to be
independent of bacterial processes.

The depositional flux of particulate biogenic silica from the overlying water to the sed-
iments is modeled using equation (8.204). With this source, the mass-balance equation for
particulate biogenic silica may be written as:
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H2
∂PSi

∂ t
=−SSi ·H2−W ·PSi+ JPSi + JDSi (8.240)

where,

Psi is the concentration of particulate biogenic silica in the sediment (g Si/m3),

SSi is the dissolution rate of PSi in Layer 2 (g Si/m3/day),

JPsi is the depositional flux of PSi (g Si/m3/day) given by the equation (8.204), and

JDSi is the detrital flux of PSi (g Si/m3/day) to account for PSi settling to the sediment
that is not associated with the algal flux of biogenic silica.

The processes included in equation (8.240) are dissolution (i.e., production of dis-
solved silica), burial, and depositional and detrital fluxes from the overlying water. Equa-
tion (8.240) can be viewed as the analog of the diagenesis equations for POM (equation
(8.205)). The dissolution rate is formulated using a reversible reaction that is first order in
silica solubility deficit and follows a Monod-type relationship in particulate silica:

SSi = KSi ·θ T−20
Si

PSi
PSi+KHPSi

(Sisat− f d2,Si ·Si2) (8.241)

where,

KSi is the first order dissolution rate for PSi at 20◦C in Layer 2 (1/day),

θSi is the constant for temperature adjustment for KSi,

KMPSi is the silica dissolution half-saturation constant for PSi (g Si/m3), and

Sisat is the saturation concentration of silica in the pore water (g Si/m3).

The mass-balance equations for mineralized silica can be formulated using the general
forms, equations (8.207) and (8.209). There is no source/sink term and no reaction in the
upper layer:

J1,Si = κ1,Si = 0 (8.242)

In the lower layer, silica is produced by the dissolution of particulate biogenic silica,
which is modeled using equation (8.241). The two terms in equation (8.241) correspond to
the source term and reaction term in equation (8.209):

J2,Si = KSi ·θ T−20
Si

PSi
PSi+KMPSi

Sisat ·H2 (8.243)

κ2,Si = KSi ·θ T−20
Si

PSi
PSi+KMPSi

fd2,Si ·H2 (8.244)
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A portion of silica dissolved from particulate silica sorbs to solids and a portion remains
in the dissolved form. Partitioning using the partition coefficients π1,Si and π2,Si, in Equa-
tions (8.210) and (8.211) controls the extent to which dissolved silica sorbs to solids. Since
silica shows similar behavior as phosphate in the adsorption-desorption process, the same
partitioning method as applied to phosphate is used for silica. That is, when DO0 exceeds
a critical concentration (DO0)crit,Si, sorption in the upper layer is enhanced by an amount
∆πSi,1:

π1,Si = π2,Si · (∆πSi,1)DO0 > (DO0)crit,Si (8.245)

When oxygen falls below (DO0)crit,Si, then:

π1,Si = π2,Si ·
(
∆πSi,1

)DO0/(DO0)crit,Si DO0 ≤ (DO0)crit,Si (8.246)

which smoothly reduces π1,Si to π2,Si as DO0 goes to zero.
Once equations (8.207) and (8.209) are solved for Si1 and Si2, the sediment flux of

silica to the overlying water Jaq,Si, can be calculated using equation (8.208).

8.5.5 Sediment Temperature

All rate coefficients in the aforementioned mass-balance equations are expressed as a
function of sediment temperature T. The sediment temperature is modeled based on the
diffusion of heat between the water column and sediment:

∂T
∂ t

=
DT

H2 (TW −T ) (8.247)

where,

DT is the heat diffusion coefficient between the water column and sediment (m2/s),
and

TW is the temperature in the overlying water column (◦C) calculated by equation
(8.110).

The model application in (Di Toro and Fitzpatrick, 1993) and (Cerco and Cole, 1994)
used D = 1.8×10−7 m2/s.

8.5.6 Method of Solution

8.5.6.1 Finite-Difference Equations and Solution Scheme

An implicit integration scheme is used to solve the governing mass-balance equations.
The finite difference form of equation (8.207) may be expressed as:
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0 = s
(

f d0 ·Ct
′
o− f d1 ·Ct

′
1

)
+KL

(
f d2 ·Ct

′
2− f d1 ·Ct

′
1

)
+ω

(
f p2 ·Ct

′
2− f p1 ·Ct

′
1

)
−W ·Ct

′
1−

K2
1

s
Ct
′
1 + J

′
1 (8.248)

where the primed variables designate the values evaluated at t+ and the unprimed variables
are those at t, where θ is defined in equation (8.110). The finite difference form of equation
(8.209) may be expressed as:

0 =−KL
(

f d2 ·Ct
′
2− f d1 ·Ct

′
1

)
−ω

(
f p2 ·Ct

′
2− f p1 ·Ct

′
1

)
+W

(
Ct
′
1−Ct

′
2

)
−
(

K2 +
H2

θ

)
Ct
′
2 +

(
J
′
2 +

H2

θ
Ct2

)
(8.249)

The two terms −(H2/θ)Ct
′
2 and (H2/θ)Ct2, are from the derivative term H2(∂Ct2/∂ t)

in equation (8.209). Each of these terms simply add to the Layer 2 removal rate and the
forcing function, respectively. Setting these two terms equal to zero results in the steady-
state model. The two unknowns Ct

′
1 and Ct

′
2, can be calculated at every time step using:

[
s · f d1 +a1 +

K2
1

s −a2

−a1 a2 +W +K2 +
H2
θ

][
Ct
′
1

Ct
′
2

]
=

[
J
′
1 + s · f d0 ·Ct

′
0

J
′
2 +

H2
θ

Ct2

]
(8.250)

a1 = KL · f d1 +ω · f p1 +W
a2 = KL · f d2 +ω · f p2

(8.251)

The solution of equation (8.250) requires an iterative method since the surface mass
transfer coefficient s, is a function of the SOD (equation (8.212)), which is also a function
of s (equation (8.232)). A simple back substitution method is used:

1. Start with an initial estimate of SOD, for example, SOD = aO2,CJC or the previous
time step SOD.

2. Solve equation (8.250) for ammonium, nitrate, and sulfide/methane.

3. Compute the SOD using equation (8.232).

4. Refine the estimate of SOD : a root finding method (Brent’s method in Press et al.
(1986) is used to make the new estimate.

5. Go to (2) if no convergence.

6. Solve equation 8.250 for phosphate and silica.
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For the sake of symmetry, the equations for diagenesis, particulate biogenic silica and
sediment temperature are also solved in implicit form. The finite difference form of the
diagenesis equation (equation (8.205)) may be expressed as:

G
′
POM,i =

(
GPOM,i +

θ

H2
JPOM,i

)(
1+θ ·KPOM,i ·θ T−20

POM,i +
θ

H2
W
)−1

(8.252)

The finite difference form of the PSi equation (equation (8.240)) may be expressed as:

PSi
′
=

(
PSi+

θ

H2
(JPSi + JDSi)

)(
1+θ ·KSi ·θ T−20

Si
Sisat− fd2,Si ·Si2

PSi+KMPSi
+

θ

H2
W
)−1

(8.253)
using equation (8.235) for the dissolution term, in which PSi in the Monod-type term

has been kept at time level t to simplify the solution. The finite difference form of the
sediment temperature, shown in equation (8.247), may be expressed as:

T
′
=

(
T +

θ

H2 DT ·TW

)(
1+

θ

H2 DT

)−1

(8.254)

8.5.6.2 Boundary and Initial Conditions

The above finite difference equations constitute an initial boundary-value problem.
The boundary conditions are the depositional fluxes (JPOM,i and JPSi) and the overlying
water conditions (Ct0 and TW ) as a function of time, which are provided from the wa-
ter column water quality model. The initial conditions are the concentrations at t = 0,
GPOM,i(0), PSi(0), Ct1(0), Ct2(0) and T (0), to start the computations. Strictly speaking,
these initial conditions should reflect the past history of the overlying water conditions and
depositional fluxes, which is often impractical because of lack of field data for these earlier
years.
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Table 8.18. Parameters related to phosphorus in water column

Parameter Valuea Equation Numberb

FPLP 0.2 (8.51)

FPDP 0.5 (8.52)

FPIP 0.2c (8.53)

FPRx 0.0 (all groups) (8.50)

FPLx 0.0 (all groups) (8.51)

FPDx 1.0 (all groups) (8.52)

FPIx 0.0c (all groups) (8.53)

∗WSs (m/day) 1.0 (8.53)

KPO4p (per g/m3) for TSS NAc (8.54)

KPO4p (per mol/m3) for TAM 6.0 (8.54)

CPprm1 (g C per g P) 42.0 (8.57)

CPprm2 (g C per g P) 85.0 (8.57)

CPprm3 (per g P/m3) 200.0 (8.57)

KRP (1/day) 0.005 (8.58)

KLP (1/day) 0.075 (8.59)

KDP (1/day) 0.1 (8.60)

KRPalg (1/day per g C/m3) 0.0 (8.58)

KLPalg (1/day per g C/m3) 0.0 (8.59)

KDPalg (1/day per g C/m3) 0.2 (8.60)

a The evaluation of these values are detailed in Chapter IX of (Cerco and Cole, 1994).
b The equation number where the corresponding parameter is first shown and defined.
c Not available in (Cerco and Cole, 1994) since their formulations do not include these
parameters.
: FPIx is estimated from FPRx +FPLx +FPDx +FPIx = 1.
* The parameters declared as an array in the source code.
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Table 8.19. Parameters related to nitrogen in water column

Parameter Valuea Equation Numberb

FNLP 0.55 (8.68)

FNDP 0.1 (8.69)

FNIP 0.0c (8.70)

FNRx 0.0 (all groups) (8.67)

FNLx 0.0 (all groups) (8.68)

FNDx 1.0 (all groups) (8.69)

FNIx 0.0 (all groups) (8.70)

ANCx (g; N; per g C) 0.167 (all groups) (8.67)

ANDC (g; N; per g C) 0.933 (8.71)

KRN (1/day) 0.005 (8.73)

KLN (1/day) 0.075 (8.74)

KDN (1/day) 0.015 (8.75)

KRNalg (1/day per g C/m3) 0.0 (8.73)

KLNalg (1/day per g C/m3) 0.0 (8.74)

KDNalg (1/day per g C/m3) 0.2 (8.75)

Nitm (g N/m3/day) 0.07 (8.78)

KHNitDO (g N/m3) 1.0 (8.78)

KHNitN (g O2/m3) 1.0 (8.78)

T Nit (oC) 27.0 (8.81)

KNit (oC−2) 0.0045 (8.81)

KNit (oC−2) 0.0045 (8.81)

a The evaluation of these values are detailed in Chapter IX of (Cerco and Cole, 1994).
b The equation number where the corresponding parameter is first shown and defined.
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Table 8.20. Parameters related to silica in water column

Parameter Valuea Equation Numberb

FSPP 1.0c (8.84)

FSIP 0.0c (8.85)

FSPd 1.0c (8.84)

FSId 0.0c (8.85)

ASCd (g Si per g C) 0.5 (8.84)

KSAp (per g/m3) for TSS NAc (8.86)

KSAp (per mol/m3) for TAM 6.0 (8.86)

KSU (1/day) 0.03 (8.90)

T RSUA (oC) 20.0 (8.90)

KTSUA (oC−1) 0.092 (8.90)

a The evaluation of these values are detailed in Chapter IX of (Cerco and Cole, 1994).
b The equation number where the corresponding parameter is first shown and defined.
c Not available in (Cerco and Cole, 1994) since their formulations do not include these
parameters.
: FSPP and FSIP are estimated from FSPP+FSIP = 1.
: FSPd and FSId are estimated from FSPd+FSId = 1.
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Table 8.21. Parameters related to chemical oxygen demand and dissolved oxygen in water column

Parameter Valuea Equation Numberb

KHCOD (g O2/m3) 1.5 (8.91)

KCD (1/day) 20.0 (8.92)

T RCOD (oC) 20.0 (8.92)

KTCOD (oC−1) 0.041 (8.92)

AOCR (g O2 per g C) 2.67 (8.93)

AONT (g O2 per g N) 4.33 (8.92)

KR (in MKS unit) 3.933c (8.93)

KTr 1.024c (1.005-1.030) (8.98)

a The evaluation of these values are detailed in Chapter IX of Cerco and Cole (1994).
b The equation number where the corresponding parameter is first shown and defined.
c Not available in (Cerco and Cole, 1994) since their formulations do not include these
parameters.
: Kro is from O’Connor & Dobbins O’Connor and Dobbins (1958).
: KTr is from Thomann & Mueller Thomann and Mueller (1987).

Table 8.22. Parameters related to total active metal and fecal coliform bacteria in water column

Parameter Valuea Equation Numberb

KHbm f (g O2/m3) 0.5 (8.101)

BFTAM (mol/m2/day) 0.01 (8.101)

Ttam (oC) 20.0 (8.101)

Ktam (oC−1) 0.2 (8.101)

TAMdmx (mol/m3) 0.015 (8.102)

Kdotam (per g O2/m3) 1.0 (8.102)

KFCB (1/day) 0.0-6.1c

(seawater)
(8.104)

T FCB (oC−1) 1.07c (8.104)

a The evaluation of these values are detailed in Chapter IX of Cerco and Cole (1994).
b The equation number where the corresponding parameter is first shown and defined.
c Not available in Cerco and Cole (1994) since their formulations do not include these
parameters.
: KFCB and T FCB are from Thomann and Mueller (1987).
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Table 8.23. EFDC+ sediment diagenesis model state variables

No. Name Bed Layer Units

1 POC-G1 Layer-2 g/m3

2 POC-G2 Layer-2 g/m3

3 POC-G3 Layer-2 g/m3

4 PON-G1 Layer-2 g/m3

5 PON-G2 Layer-2 g/m3

6 PON-G3 Layer-2 g/m3

7 POP-G1 Layer-2 g/m3

8 POP-G2 Layer-2 g/m3

9 POP-G3 Layer-2 g/m3

10 Partic-Biogenic-Silica Layer-2 g/m3

11 Sulfide/Methane Layer-1 g/m3

12 Sulfide/Methane Layer-2 g/m3

13 Ammonia-N Layer-1 g/m3

14 Ammonia-N Layer-2 g/m3

15 Nitrate-N Layer-1 g/m3

16 Nitrate-N Layer-2 g/m3

17 Phosphate-P Layer-1 g/m3

18 Phosphate-P Layer-2 g/m3

19 Available-Silica Layer-1 g/m3

20 Available-Silica Layer-2 g/m3

21 Ammonia-N-Flux g/m2−day

22 Nitrate-N-Flux g/m2−day

23 Phosphate-P-Flux g/m2−day

24 Silica Flux g/m2−day

25 SOD g/m2−day

26 COD Flux g/m2−day

27 Bed Temperature ◦C
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Table 8.24. EFDC+ sediment process model state variables and flux terms

Number Description

(1) particulate organic carbon G1 class in layer 2

(2) particulate organic carbon G2 class in layer 2

(3) particulate organic carbon G3 class in layer 2

(4) particulate organic nitrogen G1 class in layer 2

(5) particulate organic nitrogen G2 class in layer 2

(6) particulate organic nitrogen G3 class in layer 2

(7) particulate organic phosphorus G1 class in layer 2

(8) particulate organic phosphorus G2 class in layer 2

(9) particulate organic phosphorus G3 class in layer 2

(10) particulate biogenic silica in layer 2

(11) sulfide/methane in layer 1

(12) sulfide/methane in layer 2

(13) ammonia nitrogen in layer 1

(14) ammonia nitrogen in layer 2

(15) nitrate nitrogen in layer 1

(16) nitrate nitrogen in layer 2

(17) phosphate phosphorus in layer 1

(18) phosphate phosphorus in layer 2

(19) available silica in layer 1

(20) available silica in layer 2

(21) ammonia nitrogen flux

(22) nitrate nitrogen flux

(23) phosphate phosphorus flux

(24) silica flux

(25) sediment oxygen demand

(26) release of chemical oxygen demand

(27) sediment temperature
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Table 8.25. Assignment of water column particulate organic matter (POM) to sediment G classes
used in (Cerco and Cole, 1994)

WCM Variable Carbon & Phosphorus Nitrogen

G1 G2 G3 G1 G2 G3

A. “stand alon” model 0.65 0.20 0.15 0.65 0.25 0.10

B. coupled model Labile Particulate 1.0 0.0 0.0 1.0 0.0 0.0

Refractory Particulatea

: Bay and Tributary Zones 1 0.0 0.11 0.89 0.0 0.26 0.74

: Bay Zones 2 and 10 0.0 0.43 0.57 0.0 0.54 0.46

: All Other Zones 0.0 0.73 0.27 0.0 0.82 0.18

Algae 0.65 0.255 0.095 0.65 0.28 0.07

a See (Cerco and Cole, 1994, Figure 10-6) for the Zones definition.

Table 8.26. Sediment burial rates (W) used in (Cerco and Cole, 1994)

Bay Zonesaa Rate (cm/yr) Tributary Zonesaa Rate (cm/yr)

1, 2, 10 0.50 1 0.50

3, 6, 9 0.25 2, 3 0.25

7, 8 0.37
a See (Cerco and Cole, 1994, Figure 10-6) for the definition of Zones.

243 EFDC+ Theory Document



Chapter 9

LAGRANGIAN PARTICLE
TRACKING MODULE

9.1. Introduction

The section presents a module coded with FORTRAN 90/95 for Lagrangian particle
tracking coupled to EFDC+ (DSI, 2009). The module of Lagrangian particle tracking is
developed as an effective tool for solving numerous problems in fluid dynamics related to
the simulation and prediction of the trajectory of objects traveling in rivers, lakes and ma-
rine systems. The model has been calibrated by using a simple analytical calculation for
quasi-steady state and uniform flow in an open channel. In addition, several tests with dif-
ferent hydrodynamic regimes and geometries were performed. The soundness of the model
was also demonstrated in a variety of applications. In particular, the test involving a hypo-
thetical situation in the movement of insects at Caloosahatchee River Basin was simulated.
From the model results, the drift tendency of insects and their locations corresponding to
time moments were determined qualitatively and quantitatively. Through the simulations
it was demonstrated that not only the velocity field, but also the randomness and diffusion
due to turbulence also considerably impacts the dispersion of the cluster and behavior of
drifter trajectories.

9.2. Basic Equations

Study of the trajectories of movement of solid particles in a fluid environment appeared
very early in mechanics and was considered as a movement in a Lagrangian approach.
The advantage of this method is that it is possible to track the process of movement for
each specific particle in more detail and more accurately in comparison with the method of
determining average concentration for grid cells. However, the solution was too difficult to
implement in practice when the number of particles was very large because of computation
costs. With the reduction in computing costs it is now easier to implement the solutions
to these problems. The movement of solid particles is decided by a field of fluid velocity,
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therefore it is necessary to couple it to a fluid flow model.

9.3. Random Walk

The governing equations used in EFDC+ are Navier-Stokes for fluid flow, the
advection-diffusion equations for salinity, temperature, dye, toxic substances and sus-
pended sediment transport (Hamrick and Wu, 1997; Hamrick, 1992, 1996). The equations
are presented in curvilinear coordinate system for 2DH and Sigma coordinates for the ver-
tical direction. They are discretized with the finite difference method with explicit scheme.
It should be noted that the hypothesis of hydrostatic pressure is used in EFDC+. However,
the effect of non-hydrostatic pressure is not important when the vertical velocity of flow is
not very large in comparison with the horizontal components as mentioned in Huu Chung
and Eppel (2008).

The advection-diffusion equation for mass transport in a three dimensional curvilinear
orthogonal coordinate system is:

∂C
∂ t

+
∂ (uC)

∂x
+

∂ (vC)

∂y
+

∂ (wC)

∂ z
=

∂

∂x

(
AH

∂C
∂x

)
+

∂

∂y

(
AH

∂C
∂y

)
+

∂

∂ z

(
Ab

∂C
∂ z

)
(9.1)

where,

t is time,

(x,y,z) are Lagrangian coordinates of a particle,

C is concentration,

(u,v,w) are velocity components of fluid flow, and

AH and Ab are the horizontal and vertical diffusion coefficients, respectively.

The differential equations for the Lagrangian movement of particles is consistent with
the equation (9.1) and are as follows:

dx =
(

u+
∂AH

∂x

)
dt +(2p−1)

√
2AHdt (9.2)

dy =
(

v+
∂AH

∂y

)
dt +(2p−1)

√
2AHdt (9.3)

dz =
(

w+
∂Ab

∂ z

)
dt +(2p−1)

√
2Abdt (9.4)

In which dt is the time step and p is a random number from a uniformly distributed
random variable generator having mean of 0.5. When transformed using the 2p− 1 the
random component has a mean of zero and a range from -1 to 1. The transformed random
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value allows the diffusion term to move particles +/− about the advected position. Equa-
tions (9.2) to (9.4) follow the 3D random walk approach used by Dunsbergen and Stelling
(1993).

In order to determine the Lagrangian trajectory of the particle, the equations (9.2) to
(9.4) were incorporated into EFDC+ model. The numerical solution was separately divided
into the advective transport and random components as described above. This approach
allows the user to enable (i.e. turn on random walk) or disable (advective transport only)
the random components for either the horizontal and/or the vertical directions.

The Fortran90 module, DRIFTER.F90, has been developed and merged into EFDC+
to solve the equation (9.2)-(9.4). The module contains the following subroutines and func-
tions:

• DRIFTERC: Solves the equations (9.2)-(9.4) using one of three numerical options

• DRIFTER.INP: Reading the input parameters

• READSTR: Reading the comment lines

• CONTAINER: Determining the cell containing the drifter

• AREACAL: Calculating the area of polygons

• DRIFVELCAL: Interpolating the velocity components at the previous location of the
drifter

• RANDCAL: Calculating the random movement

• EDGEMOVE: Dealing with the drifter hitting the land boundary or internal walls

• INSIDECELL: Determining if the drifter is inside a cell

• DRIFTERWDEP: Interpolating the bathymetry and total water depth at the location
of drifter

• DRIFTERLAYER: Determining the layer containing the drifter

Three options are available for the solution of the differential equations (9.2) to (9.4).
They are explicit Euler, predictor-corrector Euler, and forth order Runge-Kutta. Their dis-
cretization for the equations are as follows:

Explicit Euler method: This method is very simple with the approximation of O(∆t)

xn+1 = xn +u(tn,xn,yn,zn)∆t (9.5)

yn+1 = yn + v(tn,xn,yn,zn)∆t (9.6)

zn+1 = zn +w(tn,xn,yn,zn)∆t (9.7)
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Predictor-corrector Euler method: This method has the advantage of explicit and im-
plicit features with the approximation of O(∆t2)

xn+1 = xn +
1
2
[
u(tn,xn,yn,zn)+u

(
tn+1,x

p
n+1,y

p
n+1,z

p
n+1
)]

∆t (9.8)

yn+1 = yn +
1
2
[
v(tn,xn,yn,zn)+ v

(
tn+1,x

p
n+1,y

p
n+1,z

p
n+1
)]

∆t (9.9)

zn+1 = zn +
1
2
[
w(tn,xn,yn,zn)+w

(
tn+1,x

p
n+1,y

p
n+1,z

p
n+1
)]

∆t (9.10)

where ,
(
xp

n+1,y
p
n+1,z

p
n+1
)

are calculated by equations (9.4) to (9.6)

Runge-Kutta 4 method: This method has the approximation of O(∆t4) and has been
shown in the testing for this project that it is best option of the three solution tech-
niques provided

xn+1 = xn +
1
6
(∆x1 +2∆x2 +2∆x3 +∆x4) (9.11)

yn+1 = yn +
1
6
(∆y1 +2∆y2 +2∆y3 +∆y4) (9.12)

zn+1 = zn +
1
6
(∆z1 +2∆z2 +2∆z3 +∆z4) (9.13)

in which

∆x1 = u(tn,xn,yn,zn)∆t (9.14)

∆y1 = v(tn,xn,yn,zn)∆t (9.15)

∆z1 = w(tn,xn,yn,zn)∆t (9.16)

∆x2 = u
(

tn +
1
2

∆t,xn +
1
2

∆x1,yn +
1
2

∆y1,zn +
1
2

∆z1

)
∆t (9.17)

∆y2 = v
(

tn +
1
2

∆t,xn +
1
2

∆x1,yn +
1
2

∆y1,zn +
1
2

∆z1

)
∆t (9.18)

∆z2 = w
(

tn +
1
2

∆t,xn +
1
2

∆x1,yn +
1
2

∆y1,zn +
1
2

∆z1

)
∆t (9.19)
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∆x3 = u
(

tn +
1
2

∆t,xn +
1
2

∆x2,yn +
1
2

∆y2,zn +
1
2

∆z2

)
∆t (9.20)

∆y3 = v
(

tn +
1
2

∆t,xn +
1
2

∆x2,yn +
1
2

∆y2,zn +
1
2

∆z2

)
∆t (9.21)

∆z3 = w
(

tn +
1
2

∆t,xn +
1
2

∆x2,yn +
1
2

∆y2,zn +
1
2

∆z2

)
∆t (9.22)

∆x4 = u(tn +∆t,xn +∆x3,yn +∆y3,zn +∆z3)∆t (9.23)

∆y4 = v(tn +∆t,xn +∆x3,yn +∆y3,zn +∆z3)∆t (9.24)

∆z4 = w(tn +∆t,xn +∆x3,yn +∆y3,zn +∆z3)∆t (9.25)

9.4. Oil Spill Model

EFDC+ version allows the simulation of oil spill based on drifters. Oil is maintained at
the surface layer and is moved along with the hydrodynamic impacts similar to Lagrangian
particles and broken down by evaporation and biodegradation.

EFDC+ will cause the drifter to disappear when the oil per drifter is less than 1.0mm3.
When configuring an oil spill model, it should be noted that use of the “Vertical Movement
Option” is ignored for groups that are designated as simulating oil. If the density of oil is
less than that of water then the particles are always in the surface layer. If the oil is heavier
than water, then the fully 3D option is enabled.

For simulation on the oil evaporation process, the theory of surface evaporation pre-
sented in the paper of Mackin and Aller (1984) is used. EFDC+ also simulates the effect of
biodegradation of the oil based on user defined biodegradation rate with a simple first order
decay approach based on Stewart et al. (1993). A biodegradation rate of 0.011 per day is
approximately equal to the half-life of two months. If temperature of an oil drifter is pro-
vided by the modeler then this is used as the reference rate for the optimal biodegradation.

In order to simulate a conservative oil, the user would set the degradation rate and the
vapor pressure as zero.
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Chapter 10

MARINE HYDROKINETICS
MODULE

10.1. Introduction

Marine hydrokinetic (MHK) devices extract energy from ocean currents and tides,
thereby altering water velocities and currents in the project sites. These hydrodynamic
changes can potentially affect the ecosystem, both near the MHK installation and in sur-
rounding (i.e., far field) regions. In both marine and freshwater environments, devices
will remove energy (momentum) from the system, potentially altering water quality and
sediment dynamics. In estuaries, tidal ranges and residence times could change (either in-
creasing or decreasing depending on system flow properties and where the effects are being
measured). Effects will be proportional to the number and size of structures installed, with
large MHK projects having the greatest potential effects and requiring the most in-depth
analyses. The theory and implementation of MHK in SNL-EFDC+ is presented by James
et al. (2010).

10.2. Theory of Marine Hydrokinetics

MHK devices remove momentum from a system, but also alter the turbulent kinetic
energy K, and turbulent kinetic energy dissipation rate ε . These effects are captured with
appropriate sink terms. SQ (m4/s2) is the volumetric momentum extraction rate by the
MHK device due to energy removal, as well as due to form and viscous drag from the
MHK structure. SK (m5/s3) represents the volumetric change in net turbulent kinetic en-
ergy in the appropriate model cell due to the MHK device (support), with Sε (m5/s3) as
its analogous term for the volumetric kinetic energy dissipation rate equation (Poggi et al.,
2004). These quantities are advected and dispersed downstream of the MHK device ac-
cording to the standard conservation equations used in EFDC+. The standard calculation
for SQ neglects viscous drag relative to energy removal and form drag by the MHK device,
thereby resulting in
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SQ =−1
2

CT AMU2 (10.1)

where,

CT is the MHK thrust coefficient (drag coefficient, CD, for the support) (dimension-
less),

AM is the MHK-device flow-facing area (support flow-facing area) (m2), and

U is the local flow speed in a cell
√

(u2 + v2) (m/s).

Here, MHK-device power PM (kgm2/s3) is defined as

PM =
1
2

CT AMρU3 (10.2)

where ρ (kg/m3) is the water density.
The term SK arises because MHK devices break up the mean flow motion and generate

wake turbulence (≈ 1
2CT AMU3). However, such wakes dissipate fairly rapidly, specula-

tively within about 30 MHK device lengths (turbine diameters). Preliminary MHK CFD
models have showed overly persistent wakes, perhaps in part because this term was not
taken into account. The canonical (or physics-based) form for SK reflecting the effects of a
momentum sink (or partial flow obstruction) is (Sanz, 2003):

SK =
1
2

CT AM
(
βpU3−βdUK

)
(10.3)

where,

K is the wake-generated turbulent kinetic energy (m2/s2),

βp (≈ 1.0) is the fraction of mean flow kinetic energy converted to K by drag (i.e., a
source term in the K budget) (dimensionless), and

βd (≈ 1.0−5.0) is the fraction of K dissipated by conversion to kinetic energy (i.e.,
a sink term in the K budget) (dimensionless).

The most obvious weakness of the K− ε approaches is its least understood term Sε

(Wilson et al., 1998). Over the last decade or so, various models have been proposed for Sε

(Green, 1992; Katul et al., 2004; Liu et al., 1996), but the simplest is used in this model:

Se =Ce4
e
K

SK (10.4)

where Cε4 is a closure constant (Katul et al., 2004).
The formulation for equation (10.4) is based on standard dimensional analysis common

to all K−ε approaches. Upon adding equations (10.1) to (10.4) to the momentum and K−ε

equations, it is possible to solve for momentum K, and ε if appropriate upper and lower
boundary conditions are specified. For this implementation, Cε4 = 0.9, βp = 1.0 and βd =
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5.1. In SNL-EFDC+, momentum is defined as the product of flow depth H, and velocity u
and v); conservation of kinetic energy is solved in terms of 1

2HQ2, where q is the turbulent
intensity, and conservation of turbulent energy dissipation rate takes the form HQ2l, where
l is the turbulence length scale.

10.3. Implementation into EFDC+

The simplified kinetic energy equation for an MHK device in a model σ layer is

∂

∂ t

(
mxmyρH∆k

u2 + v2

2

)
=−1

2
ρCT AM

(
u2 + v2) 3

2 =−PM (10.5)

AM =WMH∆k (10.6)

where,

mx, my are the (horizontal) x and y dimensions of a model cell (m),

∆k , which is the fraction of total water depth assigned to the kth0 layer,

AM is the frontal flow area of the device (m2),

WM is the device or support width (m), and

H∆k is the layer thickness (m).

The corresponding components of the momentum equations, simplified to exclude ad-
vective and diffusive terms, are (Galperin and Orszag, 1993).

∂

∂ t
(mxmyH∆ku) =−gmyH∆k

∂ζ

∂x
− 1

2
CT AM

(
u2 + v2) 1

2 u (10.7)

∂

∂ t
(mxmyH∆kv) =−gmxH∆k

∂ζ

∂y
− 1

2
CT AM

(
u2 + v2) 1

2 v (10.8)

where,

g is acceleration due to gravity (m/s2),

ζ is the free-surface potential (m), or the difference between the hydrostatic water
level and the flow depth (this is how water elevation or pressure head drives flow)

Solutions of the x- and y-momentum equations in EFDC+ use the form,

∂

∂ t
(Hu) =−g

H
mx

∂ζ

∂x
− 1

2mxmy∆k
CT AM

(
u2 + v2) 1

2 u (10.9)

∂

∂ t
(Hv) =−g

H
my

∂ζ

∂y
− 1

2mxmy∆k
CT AM

(
u2 + v2) 1

2 v (10.10)
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which can be written in terms of MHK device power (and equivalently for support-structure
momentum removal) as

∂

∂ t
(Hu) =−g

H
mx

∂ζ

∂x
− 1

mxmy∆k

PM

ρ (u2 + v2)
u (10.11)

∂

∂ t
(Hv) =−g

H
my

∂ζ

∂y
− 1

mxmy∆k

PM

ρ (u2 + v2)
v (10.12)

The solution procedure begins by introducing the σ layer notation based on ∆k:

∂

∂ t
(∆kHuk) =−g∆k

H
mx

∂ζ

∂x
−
[

1
mxmy∆k

PM

ρ (u2 + v2)

]
k
∆kuk (10.13)

∂

∂ t
(∆kHvk) =−g∆k

H
my

∂ζ

∂y
−
[

1
mxmy∆k

PM

ρ (u2 + v2)

]
k
∆kvk (10.14)

The momentum conservation equations are

∂

∂ t
(∆kHuk) =−g∆k

H
mx

∂ζ

∂x
−∆k

(
Qk− Q̂

)
uk−∆kQ̂uk (10.15)

∂

∂ t
(∆kHvk) =−g∆k

H
my

∂ζ

∂y
−∆k

(
Qk− Q̂

)
vk−δkQ̂vk (10.16)

where volumetric fluxes Q are

Qk =

[
1

mxmy∆k

PM

ρ (u2 + v2)

]
k

(10.17)

Q̂ =
KC

∑
k=1

∆kQk (10.18)

From this point, the solution procedure is illustrated using only the u equation, which
is summed over all KC layers to give

∂

∂ t
(Hû) =−g

H
mx

∂ζ

∂x
−

KC

∑
k=1

∆k
(
Qk− Q̂

)
uk− Q̂û (10.19)

û =
KC

∑
k=1

∆kuk (10.20)

which is the simplified external mode equation. This equation is solved with the continuity
equation for the depth-averaged velocity components, û and v−, and the water surface
elevation H, using the time-differenced form
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(
1+

Q̂
H

∆t
)
(Hû)n+1 +

∆t
2

g
H
mx

∂ζ n+1

∂x
=

(Hû)n− ∆t
2

g
H
mx

∂ζ n

∂x
−∆t

KC

∑
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where ∆t is the time step.
The internal-mode equation solution is based on considering the difference between

equations for two adjacent layers
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which has remainder
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Time differencing yields

(
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The system of KC− 1 layer-interface equations can be solved for the velocity differ-
ences across the layer and used with the definition of the depth-averaged velocity to deter-
mine the actual layer velocities.

The MHK device effect in the turbulent kinetic energy (turbulent intensity) equation is
given by
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2 q2

2
− H
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q3 (10.26)

where dimensionless B1 = 16.6 is a turbulence closure coefficient from Mellor and Yamada
(1982).
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The dissipation effect of the device is combined with the standard flow dissipation term
to give
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2
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where the total dissipation has been moved to the left side of the equation to emphasize that
it must be treated implicitly in the numerical solution procedure given by
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The turbulent length scale equation (turbulent kinetic energy dissipation rate) is
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which is solved similar to the turbulent kinetic energy equation using
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For completeness, vegetative resistance effects on K−ε were also included in the SNL-
EFDC+ coding.
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